Solid State 31P NMR Study of Phosphonate Binding Sites in Guanidine-Functionalized, Molecular Imprinted Silica Xerogels

Darryl Y. Sasaki*1 and Todd M. Alam2

Sandia National Laboratories
1Biomolecular Materials and Interfaces Dept., 2Organic Materials Dept.
Albuquerque, NM, 87185

Abstract

Phosphonate binding sites in guanidine and ammonium surface-functionalized silica xerogels were prepared via the molecular imprinting technique and characterized using solid state 31P MAS NMR. One-point, two-point, and non-specific host-guest interactions between phenylphosphonic acid (PPA) and the functionalized gels were distinguished by characteristic chemical shifts of the observed absorption peaks. Using solid state as well as solution phase NMR analyses, absorptions observed at 15.5 ppm and 6.5 ppm were identified as resulting from the 1:1 (one-point) and 2:1 (two-point) guanidine to phosphonate interactions, respectively. Similar absorptions were observed with the ammonium functionalized gels. By examining the host-guest interactions within the gels, the efficiency of the molecular imprinting procedure with regard to the functional monomer-to-template interaction could be readily assessed. Template removal followed by substrate adsorption studies conducted on the guanidne functionalized gels provided a method to evaluate the binding characteristics of the receptor sites to a phosphonate substrate. During these experiments, 29Si and 31P MAS NMR acted as diagnostic monitors to identify structural changes occurring in the gel matrix and at the receptor site from solvent mediated processes.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Solid State 31P NMR Study of Phosphonate Binding Sites in Guanidine-
Functionalized, Molecular Imprinted Silica Xerogels

Darryl Y. Sasaki* and Todd M. Alam

Sandia National Laboratories
' Biomolecular Materials and Interfaces Dept., 2 Organic Materials Dept.
Albuquerque, NM, 87185

Introduction

Over the past several decades molecular imprinting has been used to produce a large
variety of materials with selective adsorption properties for specific molecules. Organic
polymers and metal-oxide gels have been imprinted with molecular memory for an
assortment of compounds, which include alkyl orange dyes, stereoisomers of drugs,
amino acids, peptides, saccharides, nucleotides, and proteins. The imprinting
molecule is used as a template to form a receptor site with complementary binding features
regarding the molecule’s shape, structure, and spatial orientation of the peripheral
functionality. These imprinted materials have exhibited efficacy as sensor materials, supports for chromatographic separations, and materials with catalytic properties.

The molecular selectivity observed with these materials, either in separations or
catalytic activity, strongly suggests the formation of receptor sites in the solid matrix. This
large body of work involving the molecular recognition phenomenon of imprinted
materials, however, only indirectly characterizes the receptor site. Spectroscopic analysis
of host-guest interactions in the imprinted materials could provide direct evidence on the
formation of the receptor site upon the imprinting step and reveal how the site performs
during adsorption and desorption of guest molecules. Such information would be useful in
understanding the characteristics of the material and aid in further chemical modifications in
pursuit of enhanced performance.

Reports on the spectroscopic characterization of the receptor sites in imprinted
materials has been scarce due to the difficulty of identifying and isolating weak signals
from low concentrations of receptor sites in the materials. In one study, performed on imprinted crosslinked styrene/divinylbenzene copolymers, spectroscopic analysis of the binding of diketone templates to diol functionalized receptor sites were examined with FTIR and 13C CP/MAS NMR. These kinds of spectroscopic measurements both identify and quantify specific host-guest interactions within the matrix. The low concentration of receptor sites (ca. 1 mole %) necessitated 13C labeling of the template and substrates to obtain good signal-to-noise ratios in the NMR experiment. Receptor sites with two-point and one-point binding could be readily distinguished and quantified. Such spectroscopic results demonstrate the importance of understanding various binding interactions that can occur in polymeric structures and the roles they play in the molecular recognition event. Additionally, the data can reveal structural changes that occur in the material during processing steps and their effects on the receptor site.

In this report, we have also employed solid state NMR to define receptor sites formed by a surface imprinting procedure on silica sol-gel materials. The NMR data also was used to monitor changes that occur at the binding site due to alteration of material structure from template cleavage and substrate adsorption procedures. In contrast to the reference described above, the materials under consideration are inorganic metal oxides and the host-guest interactions are non-covalent. Furthermore, the template and substrate are phosphorous based eliminating the need for isotopic labeling since 31P is in 100% natural abundance. Surface-imprinted silica xerogels were prepared using phenylphosphonic acid (PPA) as a template to position guanidine-silanes on a silica matrix creating receptor sites for the selective binding of phosphates and phosphonates. In previous work with these materials, enhanced selectivity was realized when compared to non-imprinted materials. The observed selectivity was believed to be due to the specific positioning of the guanidines that allowed efficient two-point binding between guanidines and PPA. Direct observation of the one-point vs. two-point host-guest interactions in the gel should provide some insight into the efficiency of the imprinting process and performance of the receptor sites.
Experimental

General. Tetraethoxysilane (TEOS), 3-trimethoxysilylpropyl-1-trimethylammonium chloride, and 3-trimethoxysilylpropyl-1-amine were obtained from Gelest. Compound 1, 1-trimethoxysilylpropyl-3-guanidinium chloride was prepared as previously described\(^9\) and stored in dry methanol. Phenylphosphonic acid (Aldrich) was recrystallized twice from hot 2% ethanol/benzene solution. Water was purified through a Barnstead Type D4700 NANOpure Analytical Deionization apparatus to a resistivity of 18 MΩ. All other solvents were of reagent grade from Fisher Scientific.

Phosphonate Salts

Sodium salts of phenylphosphonic acid were prepared through the addition of either one or two equivalents of NaOH to produce Na-PPA and Na\(_2\)-PPA, respectively, followed by concentration of the solution, isolation of the crystalline salt, and recrystallizations in aqueous ethanol. For example, Na-PPA was formed by adding 0.5 mL of a 2.5 M aqueous solution of NaOH to a pH 2.0 solution of phenylphosphonic acid (200 mg) in 20 mL of deionized water, yielding a resultant pH of 3.5. The solution was evaporated to dryness to yield a white powder that was then recrystallized thrice in hot 10% aqueous ethanol to yield colorless needles. Elemental analysis: Calcd. for C\(_6\)H\(_6\)O\(_3\)PNa: C, 40.02; H, 3.36; Na, 12.77; P, 17.20. Found: C, 40.07; H, 3.40; Na, 12.77; P, 17.58. Na\(_2\)-PPA was prepared similarly using 1.0 mL of the 2.5 M NaOH solution to give a PPA solution pH of 7.8,\(^\text{20}\) and recrystallization of the isolated solid with hot 5% aqueous ethanol. White, plate-like crystals were isolated. Calcd. for C\(_6\)H\(_5\)O\(_3\)PNa\(_2\): C, 35.67; H, 2.49; Na, 22.76; P, 15.33. Found: C, 35.21; H, 2.63; Na, 21.15; P, 15.58.

Adsorption of the PPA sodium salts to blank xerogels was accomplished by suspending the xerogel particles (75 – 200 μm) in aqueous solution of the salts, followed by evaporation of the water then drying under vacuum at 60 °C overnight.
Molecular Imprinting in Xerogel

An ethanol solution of TEOS (610 mL, 50% w/w) was stirred in a 1L vessel followed by addition of water (24.5 mL) and 1N aqueous HCl (1 mL). The mixture was heated to 60 °C for 1.5 hours with stirring then allowed to cool to room temperature producing the homogeneous sol. Gelation of the sol was accomplished by adding 0.1M aqueous NH₄OH (9.1 mL) and aging the closed container at 50 °C for one day. The resultant gel was crushed, washed twice with ethanol, collected by filtration, then further aged in fresh ethanol at 50 °C overnight. The gel was collected and placed in a solution of 100 mL ethanol containing PPA (4.0 mmole for the 2:1 gel, or 8.0 mmole for the 1:1 gel) and either 1 (8.0 mmole) or 3-trimethoxysilylpropyl-1-trimethylammonium chloride (8.0 mmole) with incubation for another day at 50 °C in a closed container. Following this time the container was opened and the solvent allowed to evaporate away at 50 °C over a period of 12 hours. Non-functionalized (blank) and randomly functionalized xerogels were prepared identically, with the exclusion of functionalized silanes and PPA in the former and PPA in the latter. The finished xerogel was then crushed and sized to 75 - 200 micron size particles, washed with ethanol, and dried under vacuum at 60 °C for a day.

Phosphonate Adsorption Studies

Xerogel samples (200 mg) of imprinted and control materials (non-functionalized or randomly functionalized) were loaded with additional PPA by soaking the xerogels in ethanol solutions (2 mL) of PPA for 10 minutes, followed by evaporation of solvents under reduced pressure with a rotary evaporator at 40 – 50 °C.

Removal of the PPA template was achieved by washing the imprinted gels with acidic aqueous solution at room temperature using the following procedure: The imprinted material (200 mg) was stirred in aqueous 1N HCl (30 mL) with an orbital shaker for 1h. The gel was then collected on a glass frit Buchner funnel and washed once with aqueous...
1N HCl (30 mL), followed by water (30 mL). The procedure was repeated to effect complete removal of PPA. After drying in vacuum (25 in Hg) at 60 °C overnight the material was analyzed by NMR and carried onto the rebinding experiments.

Rebinding of PPA was conducted in an aqueous solution adjusted to pH 7 with dilute NaOH solution. The volume of the solution was adjusted so that total substrate in solution was greater than ten times the nominal loading of guanidine on the gel. The solution was swirled overnight using an orbit shaker at room temperature then collected in a Buchner funnel followed by drying overnight under vacuum at 60 °C.

NMR Analyses

Solutions of 1 (1.0 M) and PPA (10 mM) were prepared in dry ethanol. The high resolution solution phase NMR experiments were performed on a Bruker AMX 400 at a resonant frequency of 161.99 MHz using a 5 mm bb probe, with 1k to 8k scan averages with a 9 μs π/2 pulse and 1H decoupling using a WALTZ-16 pulse sequence. The chemical shift was referenced to external phosphoric acid (δ = 0.0 ppm).

Solid state magic angle spinning (MAS) 31P NMR spectra of the prepared materials were obtained on a Bruker AMX 400 at a resonant frequency of 161.99 MHz using a 4mm bb MAS probe and a 12.5 kHz spinning speed. The reference was set to external (NH₄)₂H₂PO₄ (δ = 0.8 ppm with respect to external phosphoric acid). Single pulse Bloch decays with high power decoupling, 20 second recycle delays, and 128 to 1024 scan averages were employed. For materials where duplicate samples were prepared for an experiment, a ≤ 10% deviation in peak area was typically found. MAS peak intensities were obtained from full spectral simulation of the spinning side band manifold resulting from the non-zero chemical shift anisotropy, including area of isotropic resonance and all associated spinning side bands.
Solid state 29Si MAS NMR spectra were obtained on a Bruker AMX 400 at 79.5 MHz using a 7 mm MAS BB probe spinning at 4 Hz. The Q^* distribution were obtained using a single pulse decay, with 240 seconds recycle delay and 64 – 256 scan averages. MAS was performed under air to reduce the spin-lattice relaxation of the 29Si nucleus.

Results and Discussion

Molecular imprinting is the efficient assembly, or coordination, of functionalized monomers in a specific pattern about a template and the fixation of these functionality in 2- or 3-dimensional space. The number of interaction points between the template and the formed receptor site can be numerous, although in most cases just a few are considered dominant. In the present study, the dominant host-guest interaction exists between the cationic, hydrogen bond donating guanidine group and the anionic, hydrogen bond accepting phosphonate. This interaction is reminiscent of the guanidine-phosphate interaction found in many biological systems.21,22,23

31P NMR has proven to be a valuable diagnostic tool to monitor the protonation state and coordination of phosphates and phosphonates in solution and solid phase systems. In studies of extracellular pH of rabbit bladder, phenylphosphonic acid (PPA) was shown to be an excellent pH sensitive probe exhibiting a chemical shift from 13.6 ppm to 12.0 ppm with changing pH from 6.3 to 7.8.24 Binding of adenosine triphosphate (ATP) and dibenzylphosphate guests to synthetic amine and guanidine functionalized hosts in solution phase have also been monitored with 31P NMR solution phase studies.25,26,27,28 Host-guest complexation typically produces an upfield shift of a few ppm. On solid surfaces, PPA has been reported to covalently link to silica gel.29 The surface bound PPA has a 31P NMR chemical shift of 10.4 ppm. On alumina, PPA can be found in multiple states coordinated with the matrix with distinct chemical shifts.30

Phosphonate substrate binding to imprinted gels can occur through two-point and one-point binding interactions with the guanidine functionality. Non-specific adsorption
could occur as well with the gel surface. Figure 1 illustrates these various binding interactions of PPA to the functionalized gel. Under the pH conditions of these experiments the guanidine groups will remain as guanidinium cations ($pK_a = 13.6$). Ionic interactions will foster long range attraction between PPA and the guanidine groups. Shorter range hydrogen bonding interactions may contribute to more specific phosphonate-guanidine pairing. Two-point binding of PPA to the gel should occur through the dianionic form of the phosphonate, whereas for the one-point mode the monoanionic form of PPA will be bound. Non-specifically adsorbed PPA could be bound in the fully protonated form or as various salt species depending on its environment on the gel matrix.

Figure 1

In the following sections, we will first describe the preparation of imprinted silica sol-gel materials and the 31P solid state NMR of those gels in their initial state, after template removal, and following uptake of PPA ligand. We will then attempt to associate the spectral peaks with specific binding modes of PPA to the imprinted gels through solid state and solution phase NMR experiments.

Imprinted Gels: PPA Removal and Rebinding

The molecularly imprinted TEOS xerogels were prepared as described previously. The functionalized monomers, 3-trimethoxysilylpropyl-1-guanidinium chloride (1) and 3-trimethoxysilylpropyl-1-trimethylammonium chloride, were covalently bound to a silica xerogel matrix in the presence of the imprinting molecule phenylphosphonic acid. The molar loading of guanidine or ammonium monomer on the silica xerogel was 0.6 mmole/g.

Figure 2 shows a display of stacked 31P NMR spectra of crystalline PPA (spectrum a) and silica xerogels functionalized with 1 and templated with PPA at a 2:1 (spectrum b) and 1:1 (spectrum c) molar ratio. Crystalline PPA has one resonance at 21.0 ppm, identical
to that found in the literature.30 For the imprinted gels, PPA yields two peaks at the chemical shifts of 15.5 and 6.5 ppm. At a 2:1 ratio of 1 to PPA, the integration of these peaks shows a relative percent of 70\% for the peak at 6.5 ppm and 30\% for the other at 15.5 ppm (Table 1). At a 1:1 ratio, the peak at 15.5 ppm becomes dominant with a relative percentage of 69\% and 31\% for the adsorption at 6.5 ppm.

Figure 2

Table 1

Affinity studies with PPA were performed on the gels imprinted with a 2:1 ratio of 1 to PPA. The gels were characterized by 31P NMR prior to and after PPA removal, and following PPA readsoption. Removal of the PPA template was achieved by soaking the imprinted gels in a 1N aqueous HCl solution at room temperature for one hour. Approximately 93\% of the template was extracted in this first washing as determined by corroborating evidence from Bartlett phosphate analysis, UV spectroscopy, and 31P solid state NMR.19 The remaining PPA gave well resolved absorption peaks with the same chemical shifts of 15.5 and 6.5 ppm, similar to spectra in Figure 2, with the peak area ratio favoring the complex associated with the 6.5 ppm peak (Table 2).

As a comparison, imprinted gels were prepared using the trimethylammonium monomer 2 to examine PPA complexation behavior through ionic interaction alone. On a gel loaded with a 2:1 ratio of 2 to PPA, 31P NMR detected resonances at 15.9 and 7.8 ppm (Table 2). The ammonium-functionalized gel gave a peak area ratio with a strong preference for the 15.9 ppm resonance (74:26). The chemical shifts of these peaks are similar to those observed with the guanidine-functionalized gels, however the peak area distribution favors the peak at higher field for the latter gels. Interestingly, acid washing of the ammonium functionalized gel produces a similar result to the guanidine-functionalized gel. That is, there is a distinct preference for the PPA complex associated with the higher field 7.8 ppm resonance to remain bound to the gel. Repeating the acid washing procedure
for both guanidine and ammonium functionalized gels effects complete removal of the template.

Table 2

Following template removal, rebinding studies were performed on the guanidine-functionalized gels to determine the binding mode of PPA substrate molecules to the receptor site. The xerogels were soaked overnight in an aqueous solution of PPA at pH 7, at concentrations greater than ten-fold in excess to the nominal number of functional groups on the gel. The solution concentrations of PPA that were used are listed in Table 3 along with the relative ^{31}P NMR peak areas of the bound PPA. Blank gels subjected to the same rebinding conditions did not show any adsorption of PPA as determined by ^{31}P solid state NMR of the gel and UV analysis of the solution phase.

Table 3

The NMR spectra of the imprinted gels rebound with PPA are shown in Figure 3. The peaks are significantly broader than those observed with the gels in their initial state and after washing with acid solution. Curve fitting analysis showed that the spectra in Figure 3 can be fit to two absorptions with chemical shifts of ~12 and 5 ppm. The significant change in chemical shift of the bound PPA relative to the initial gel, particularly at lower field, and the broadening of the peaks indicate some alteration of the silica matrix and the receptor site.

In light of the findings above, a ^{29}Si solid state MAS NMR analysis of the gels in the initial state, after PPA removal with acid washing, and after the rebinding experiment with PPA were conducted to determine the extent of structural change of the matrix following each step. The spectra are displayed in Figure 4. The Q_n distribution33 of the silicon species is identical between the initial gel and the gel following acid washing (Q_n-
54%, Q_3 - 37%, Q_2 - 6%, T from monomer 1 - 3 – 4%). However, following the re-binding experiment the Q_a distribution changed to Q_{4-} 59%, Q_3 - 38%, Q_2 - 0%, and T - 4%, indicating significant changes to the gel structure effected by soaking in pH 7 buffer solution. The changes are likely due to extended condensation of the silica matrix as is observed with sol-gel materials in neutral to basic solutions. Additionally, development of surface silanols from prolonged exposure of the TEOS gel to aqueous solutions can also alter the PPA receptor sites regarding hydrophilicity, hydrogen bonding interactions, and polarity of the surface. The 29Si NMR data coincide with the 31P NMR spectral observations and scenarios described above.

Through a series of controlled complexation studies, attempts were made to correlate the NMR absorptions observed above with particular PPA binding modes. The subsequent sections will describe those experiments and results.

Induced Adsorption of PPA to Imprinted Gels

Although PPA does not adsorb onto non-functionalized (blank) gels at concentrations below 1.0 M in water or ethanol, it is possible to induce adsorption through solvent evaporation. To identify the NMR absorptions associated with non-specific adsorption, PPA was adsorbed onto blank gel from ethanolic solution using the solvent evaporation procedure. The gel gave peaks at 17.6 and 8.2 ppm (Figure 5b). The peak at 17.6 ppm is similar to that found in reference 30, which identifies this peak as "ionized", or monoanionic PPA. The peak at 8.2 ppm, however, does not correlate with any form of PPA found in the literature. It is possible that this peak is associated with the dianionic form of PPA interacting with the gel. None of the materials characterized in these studies
exhibited absorptions associated with covalently bound PPA to silica gel (10 – 11 ppm), as observed by Lukes, et.al.29

Figure 5

Additional quantities of PPA were also adsorbed onto imprinted gels by solvent evaporation from ethanolic solution to evaluate the binding modes associated with the peaks at 15.5 and 6.5 ppm. By increasing the PPA loading on the imprinted gel the two-point binding mode should give way to the one-point binding mode. Figure 5 shows 31P NMR spectra of the imprinted gel (2:1 ratio of 1 to PPA, spectrum c) and the same gel with increased loading of PPA (spectra d and e). Table 4 lists the relative peak areas observed. As a reference, the spectrum of crystalline PPA is shown as spectrum a. With the addition of one molar equivalent of PPA to the imprinted gel, a total guanidine to PPA molar ratio of 1:1 is produced. The relative peak ratio of this gel is 63:37 in favor of the resonance at 6.5 ppm (Figure 5d), only slightly different than the initial imprinted gel. At higher loadings of 1:3 guanidine to PPA, the intensity of the resonance at 15.5 ppm becomes dominant (51%) relative to the peak at 6.5 ppm (43%) (Figure 5e). In addition, another peak emerges at 21.0 ppm, identical to the chemical shift of crystalline PPA. Figure 5f shows a spectrum of a randomly functionalized gel also with a 1:3 ratio of 1 to PPA loading. This material, although identical in surface density of guanidine functionalization as the imprinted gels, displays a comparatively smaller peak area from the absorption at 6.5 ppm (20%) relative to the peak at 15.5 ppm (76%).

From these results a trend emerges linking the absorption at 15.5 ppm to the one-point binding interaction of PPA to guanidine and that of the 6.5 ppm peak to the two-point binding mode. The initial 2:1 1 to PPA imprinted gel, by stoichiometry, should favor the two-point binding mode, which is consistent with the dominance of the absorption at 6.5
ppm. By loading increasing quantities of PPA to the gel the two-point interactions were forced into single point interactions. Thus, the peak at 15.5 ppm grows in relative area.

In this induced PPA adsorption study, non-specific binding plays a role. By the stoichiometry of the loading amounts, a significant portion of PPA is non-specifically bound, some in crystalline form. The slight shifts of the peaks to lower field at higher loadings (Figures 5e and 5f) are consistent with contributions from non-specific binding (Figure 5b). Similar arguments can be made for the 1:1 imprinted gel (Figure 2c). That is, a significant population of two-point interactions is observed that reduces the number of available guanidine sites leading to non-specific binding of PPA. Quantification of the data is beyond the scope of this report and we limit our discussions to qualitative assessment of peak areas and binding modes.

Attempts to match the NMR absorptions with specific ionic states of the PPA on the gel were made by preparing samples of mono- and di-sodium salts of PPA. Although the samples were pure as determined by elemental analysis, their NMR spectra in the crystalline and silica gel adsorbed states were difficult to interpret. In the crystalline state both mono- and di-sodium salts gave peaks at 15 and 13 ppm of near equal intensity. As adsorbed onto blank xerogel, variable results were obtained. In most cases, two peaks emerged at 15 and 7 ppm, however, the peak areas did not show any correlation with the ionic state of PPA. The variability of the NMR spectra with these samples may be affected by the water content of the sample. More rigorous analyses of these samples are warranted and will be pursued.

Solution Phase PPA-I Complexation

A 31P NMR solution phase study of the guanidine monomer 1 with PPA was also performed in an effort to establish a correlation with the solid phase data. In the presence of 1 at 10 mM concentration in ethanol, PPA gave rise to two peaks at 15.5 (sharp) and 5.5 (broad) ppm, slightly different from that of PPA alone at 15.9 ppm. The narrow peak at
15.5 shows a chemical shift that changes with temperature and begins to broaden at -90 °C. This resonance probably represents an average chemical shift of free PPA and bound PPA, but these two species could not be resolved by NMR in the temperature range investigated (-90 to 50 °C). The broad resonances at 5.5 ppm shows no variations with temperature and represents a stable, non-exchanging complex on the timescale probed by the ^{31}P NMR. This peak’s characteristics are consistent with a slower on/off rate of formation for the 2:1 guanidine to PPA complex. The solution phase data correlate well with the solid phase data adding further weight to the interpretation of the one-point and two-point interactions with PPA belonging to the ^{31}P NMR peaks at 15.5 and 6.5 ppm, respectively, in the solid phase.

Figure 6

With the PPA binding modes now assigned to specific NMR absorptions, an evaluation of the host-guest complexation behavior of the functionalized gels can be made. In the 1:1 and 2:1 guanidine to PPA imprinted gels (Table 1), the desired template to functional monomer stoichiometry in the receptor is favorably expressed in the gel. That is, the two-point PPA binding mode is favored in the 2:1 gel, whereas the one-point mode is favored in the 1:1 gel. In comparing PPA binding onto imprinted versus non-imprinted gels (Table 4), the single point binding mode was largely preferred in the non-imprinted gels. In the absence of an imprinting molecule, functionalization of the gel surface becomes random. In this case, the coincidence of having two guanidines in the correct proximity and orientation for a two-point interaction is relatively low compared to an imprinted site.

In an interesting comparison of guanidine versus ammonium functionalized gels, identical imprint loadings of 2:1 functional monomer to PPA gave almost opposite results. If we may equate the binding modes interpreted for the guanidine with the similar
absorption peaks from the ammonium functionalized gel, then the guanidine gels produced a predominance of two-point interactions whereas the ammonium gels yielded mostly single-point interactions (Table 2). This result is similar to other studies that compare the binding interactions of guanidine and ammonium functionalized hosts with phosphates. The guanidine functionality, with its hydrogen bond donating properties and delocalized cationic charge, is more amenable to complex and intimate interactions compared to the tetraalkyl ammonium cation.

Removal and readsorption of the PPA template also gave some insight into the binding energies and kinetics of PPA to the functionalized gels. Table 2 summarizes these results. On template removal, the guanidine functionalized gels released 93% of the PPA template. Of the 7% PPA that remains bound, 82% was in the two-point binding mode and 18% as the one-point mode. There is a distinct preference for the two-point binders to remain on the gel. This result is consistent for a higher binding constant and/or slower off rate for two-point interactions relative to the one-point interaction. A similar result was also observed for the ammonium functionalized gels.

In the PPA readsorption studies, the data reported are consistent with previous results regarding the trend of PPA affinity to these gels with increasing pH. That is, the apparent PPA affinity at pH 7, as estimated from Table 3 ($K_a \approx 10^2 \text{ M}^{-1}$), is lower than that at pH 5 ($K_a = 3 \times 10^3 \text{ M}^{-1}$). In these studies the adsorption data was insufficient for an accurate determination of a binding constant. The spectral data, however, could distinguish different host-guest binding interactions. Two absorptions at 12 and 5 ppm are observed. Changes in the silica matrix are believed to have shifted the absorptions of the two-point (15.5 ppm) and one-point (6.5 ppm) interactions upfield to 12 and 5 ppm. With this assumption some assessment of the PPA readsorption can be made. At 0.1 mM concentration of PPA, 11% of the capacity (based on nominal guanidine loading) was bound. The majority of the bound PPA reside in the one-point binding mode (82%) with the remainder in the two-point mode. Raising the PPA concentration to 1.0 mM increases
the amount of PPA bound to 35% of capacity with only slight changes in the one-point to
two-point binding distribution. And, at 10.0 mM concentration, 47% of capacity is
occupied and a shift in the binding mode distribution is observed tending towards the two-
point binding interaction. The results suggests either that the one point interaction has a
larger binding constant than the two point interaction, which is considered unlikely, or that
the one point mode has faster binding kinetics. The large structural changes in the gel
matrix revealed by the 29Si solid state NMR studies cautions against any further evaluation
or speculation at this time.

Conclusion

Solid state 31P NMR has been shown to be an excellent spectroscopic technique to
probe the modes of guest complexation in molecularly imprinted materials. Considering
most materials do not incorporate phosphorus species and a growing interest in preparing
molecular recognition materials with biomolecule affinity, many of which are
phosphorylated, this technique should prove an important tool to characterize and develop
imprinted materials with separation and sensor applications. In our results we were able to
identify non-specific, one-point, and two-point guanidine to phenylphosphonic acid
interactions on imprinted silica xerogels. This allowed a qualitative determination of the
types of sites prepared by our molecular imprinting technique as well as an assessment of
the imprinted sites following template removal and subsequent complexation with
phosphonate guests. The affinity experiments on the template-removed gels were
complicated by structural changes in the metal-oxide gel that occurred during overnight
exposure to aqueous solution at pH 7, as determined by solid state 29Si NMR. We are
currently examining methods to post-functionalize the gel surface to produce metal-oxide
imprinted gels with recognition properties that are stable and functional under a large range
of aqueous conditions for sensing and separations applications.
Acknowledgements

We wish to thank Dr. Roger Assink for his helpful advice in the preparation of this manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

References

33) Qₙ = Si(OSi)ₙ(OR)₄₋ₙ, where R = H, alkyl, aryl
Table 1. Relative Solid State 31P NMR Peak Areas from Guanidine Functionalized Xerogels Imprinted with PPA

<table>
<thead>
<tr>
<th>Imprint Ratio</th>
<th>Relative % Peak Areasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1 PPA</td>
<td>6.5 ppm</td>
</tr>
<tr>
<td>2:1</td>
<td>30</td>
</tr>
<tr>
<td>1:1</td>
<td>69</td>
</tr>
</tbody>
</table>

a Separately prepared samples varied in peak area by ≤ 10%.

Table 2. Solid State 31P NMR Analysis of PPA Imprinted Guanidine and Ammonium Functionalized Gels Before and After Template Removala

<table>
<thead>
<tr>
<th></th>
<th>Rel. % Peak Area</th>
<th>Rel. % Bound PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 - 15 ppm</td>
<td>8 - 6 ppm</td>
</tr>
<tr>
<td>Guanidine Gels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initialb</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>After wash</td>
<td>18</td>
<td>82</td>
</tr>
<tr>
<td>Ammonium Gels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>74</td>
<td>26</td>
</tr>
<tr>
<td>After wash</td>
<td>52</td>
<td>48</td>
</tr>
</tbody>
</table>

a After first acid wash in aqueous 1N HCl, 1 hour, room temperature.
b Prepared separately from that reported in Table 1 & 4.

Table 3. Readsorption Studies of PPA to Guanidine-Functionalized Imprinted Gels

<table>
<thead>
<tr>
<th>[PPA]</th>
<th>Rel. % Peak Area</th>
<th>Rel. % Bound PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 ppm</td>
<td>5 ppm</td>
</tr>
<tr>
<td>10^{-4} M</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>10^{-3} M</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>10^{-2} M</td>
<td>65</td>
<td>35</td>
</tr>
</tbody>
</table>
Table 4. Relative Solid State 31P NMR Peak Areas of PPA Adsorbed on Functionalized Xerogels

<table>
<thead>
<tr>
<th>Spectrum b</th>
<th>1 : PPA</th>
<th>Relative Peak Area a</th>
</tr>
</thead>
<tbody>
<tr>
<td>5c</td>
<td>2:1</td>
<td>21.0 ppm 0 30 70</td>
</tr>
<tr>
<td>5d</td>
<td>1:1</td>
<td>15.5 ppm 0 37 63</td>
</tr>
<tr>
<td>5e</td>
<td>1:3</td>
<td>6.5 ppm 6 51 43</td>
</tr>
<tr>
<td>5f</td>
<td>1:3e</td>
<td></td>
</tr>
</tbody>
</table>

aRelative intensity includes integration of spinning side band manifold associated with each reported chemical shift. bFrom Figure 5. eNon-imprinted gel functionalized with 1.
Figure Captions

Figure 1. Schematic of the various binding modes of PPA to a guanidine functionalized xerogel surface.

Figure 2. Solid-state 31P MAS NMR of crystalline PPA (a) and silica xerogels imprinted with a 2:1 (b) and 1:1 (c) ratios of 1 and PPA.

Figure 3. Solid-state 31P MAS NMR of an imprinted gel (2:1 ratio of 1 and PPA) completely removed of template then equilibrated with 10 mM (a), 1.0 mM (b), and 0.1 mM (c) concentrations of PPA in aqueous solutions at pH 7.0.

Figure 4. Solid-state 29Si MAS NMR of a 2:1 1 to PPA imprinted gel prior to (a) and after (b) washing with aqueous 1N HCl solution for 1 hour, and following overnight equilibration with an aqueous solution of 1 mM PPA at pH 7.0 (c).

Figure 5. Solid-state 31P MAS NMR of a silica xerogel imprinted with a 2:1 ratio of 1 and PPA (c) with increased loadings of PPA to 1:1 (d) and 1:3 (e) total molar ratios of 1 to PPA. Spectra of crystalline PPA (a), PPA adsorbed on blank gel (b), and a randomly functionalized guanidine gel adsorbed with a 1:3 guanidine to PPA loading (f) are included as references.

Figure 6. High resolution 31P NMR solution spectra of 10 mM ethanol solutions of PPA alone (a) and with 1 at 1M concentration (b).
Figure 1

Solid State 31P MAS NMR Study of Phosphonate Binding to...
Sasaki, D. Y. and Alam, T. M.
Figure 2

Solid State 31P MAS NMR Study of Phosphonate Binding to ...
Sasaki, D. Y. and Alam, T. M.
Figure 3
Figure 4
Solid State 31P MAS NMR Study of Phosphonate Binding to ...
Sasaki, D. Y. and Alam, T. M.
Figure 6

Solid State 31P MAS NMR Study of Phosphonate Binding to ...
Sasaki, D. Y. and Alam, T. M.