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Abstract 

This paper investigates the time efficiency of 
using a wavelet transform-based method to extract the 
impulse response characteristics of a structural dynamic 
system. Traditional time domain procedures utilize the 
measured disturbances and response histories of a sys- 
tem to develop a set of auto and cross correlation func- 
tions. Through deconvolution of these functions, or 
matrix inversion, the Markov parameters of the system 
may be found. By transforming these functions into a 
wavelet basis, the size of the problem to be solved can 
be reduced as well as the computation time decreased. 
Fourier transforms are also used in this capacity as they 
may increase the time efficiency even more, but at the 
cost of accuracy. This paper will therefore compare the 
time requirements associated with a time, wavelet, and 
Fourier-based method of Markov parameter extraction, 
as well as their relative accuracy in  modeling the sys- 
tem. 

1. Introduction 

The basis for extracting the Markov parameters 
of a system, 11, from vibration data involves the de- 
convolution of the input excitation, u, from the output 
response, y : 

T 
y(t) = h ( T ) U ( t  - 7 ) d r  (1) 

Classically, the fast Fourier transform (FTT) has been 
used extensively in solving the deconvolution problem 
due to the time efficiency obtained by its ability to trans- 
form the time-domain convolution to a simple frequency 

multiplication. However, FFT procedures are prone to 
a variety of problems, including leakage and aliasing, 
that limit their ability to extract Markov parameters ef- 
fecti vely. 

Time procedures, on the other hand, do not suf- 
fer from the limitations associated with FFTs since the 
deconvolution problem is solved entirely in the time do- 
main. These procedures essentially reduce to solving a 
set of linear equations given by: 

Y = h U  (2) 

The output matrix Y ,  the impulse response matrix h 
and the input matrix U are given, respectively, by: 

Y = ( y ( O )  Y ( 1 )  . ' .  Y ( S - 1 ) )  [ r n x s l  
h = (h(0) h(1) . . . h(rp)} [rn x r ( p  + l)] 
U =  

u(0) u(l) . . . u(p) . . .  u(s- 1) 
0 u(0) . . .  u(p-  1) ... u(s- 2) 
0 0 . . .  u ( p - 2 )  ... u(s-3) 

0 0 0 u(0) ... u ( s - p -  1) 
[++ 1) x 5.1 

(3) 

0 0 . . .  . . .  ... . . .  1 
i n  which m, s, r and p are the number of measure- 
ment vectors, the number of measurement samples, the 
number of input signals, and the length of the impulse 
response, respectively. The direct method of solving 
(2) is to multiply both sides of the equation by U-I. 
Unfortunately, depending on the kind of input used, the 
matrix U may be strongly ill-conditioned, leading to an 
exploding impulse response. Also, for multiple input 
systems, the additional DOFs form a matrix U that has 
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more rows than columns, meaning the matrix will be 
underdetermined. Most cases therefore require the use 
of a pseudo inverse rather than a direct one to over- 
come the underdetermined state, performed through the 
creation of auto and cross correlation functions: 

Cross - Correlation : 

Auto - Correlation : 

R y u  = YUT 
Ruu = UUT (4) 

The Markov parameters, h, are then found by: 

h = (5) 

which is also the definition of the pseudo inverse. 
Due to both the ill-conditioning problems and 

the large time requirements for inversion of the in- 
put matrix, we have proposed the use of wavelets for 
solving the set of linear equations (Robertson, 1997). 
Wavelets are used to transform the time domain de- 
convolution problem into a set of wavelet bases where 
their special features can be used to solve the equations 
more effectively. The transformation of the input or 
input auto-correlation matrix (depending on the method 
used) is the most important, since this matrix must be 
inverted to find a solution. The change of bases can 
improve various aspects of the problem including the 
conditioning of the matrices and the ability to reduce 
the size of the matrices. This paper explores these var- 
ious attributes when using wavelet transforms and how 
they can be used to decrease the overall computation 
time required for finding the Markov parameters of a 
system. 

2. Reduction in Matrix Sizes via 
Wavelet Multiresolution 

The size of the input and output matrices are 
dictated by the size of the ensemble used in  the analysis, 
and by the number of Markov parameters needed. Noisy 
or lightly damped systems necessitate the use of a rather 
large ensemble in order to obtain a converged solution. 
One method that has  been used to help decrease the size 
of the matrix needed for a lightly damped system is the 
Observer Kalman Identification method(Juang, 1993). 
This method actually induces damping into the system 
so that the Markov parameters will decay more quickly, 
allowing for a smaller ensemble size to be used. 

Wavelets can be used to decrease not the size of 
the ensemble but the input or input-correlation matrix 
that is formed. There are a variety of ways to apply 
wavelets to the deconvolution problem, of which three 
approaches will be examined in this paper. A more de- 
tailed explanation of these procedures may be found in 
(Robertson, 1997). The first method is the transforma- 
tion of the rows of the U and Y matrices. which when 

substituted back into the convolution equation (2), ap- 
pear as: 

(6) 
y D \ V T  - - h . u D \ \ ‘ T  

Second is the transformation of the rows of the UU’ 
and YU’ matrices: 

[y . UT]D’\‘T = h . [U . UT]”\VT (7) 

And last is the 2D transformation of the UU’ matrix 
and 1 D transformation of Y U’ : 

(8) [y . UT]”W.\” = Il . [u . UT]u\v’r2 

where D W T 2  represents the 2D wavelet transforma- 
tion. With all these methods, i t  is possible to reduce 
the size of the matrix, U or UU’, to be inverted by 
truncating the wavelet coefficients. Truncation of the 
input matrix will help reduce the condition number, the 
amount of time needed for inversion, and in some cases 
allow for the inversion of a matrix which was previously 
not possible due to ill-conditioning 

The construction of the wavelet transform of a 
signal can be expressed in the following form: 

[ao][a11[a2a3][a4 . . . a~ I [as  . . . a151. . . [a,,/~+1 . . .an-lI 
(9) 

where n is the length of the signal and each bracket 
represents a frequency band. The frequency bands in- 
crease from left to right as they also double in  width. 
Therefore, the last frequency band represents frequen- 
cies from one-half thc Nyquist frequency to the Nyquist 
frequency. Any of these frequency bands (or levels) 
may be truncated, provided there is no significant in- 
formation contained in that band. For instance, i f  the 
highest frequency band were truncated, the result would 
be a vector that is half the original size. For the input 
matrix, this will result in a matrix that is now half the 
width of the original time domain matrix. With the trun- 
cation of the wavelet-transformed input matrices, the 
resulting size of the Markov parameters are the same, 
since only the inner dimensions are being altered. Take 
for instance a system with 256 time points, the change 
in the size of the matrices due to truncation of the sec- 
ond half of the wavelet transform is shown in equation 
10. 

h U 
(1 x 256) (256 x 256) 

- - Y 
(1 x 256) 

Original 

h U - Y 
(1 x 128) - (1 x 256) (256 x 128) 

Triincated : 

(10) 
For the 2D transform, on the other hand, the dimensions 
of the Markov parameters (MPs) are being altered by 
half. Therefore, when the MPs are being constructed 
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from their wavelet transform (WT), the signal should 
be padded with zeros so that the resulting MPs are of 
the correct size. 

In table 1, one can see the drastic reduction in  
the amount of time required for inversion when the size 
of the input matrix is reduced. For the Uw and UUw 
inversions, the time needed is reduced to less that 1/3 
of the original, while for the 2-D transform, time is 
dropped to 1/10 the original. Though the conditioning 
of the matrix also drops with the reduction in inversion 
time, the most important feature for the time reduction 
seems to be the size of the matrix. 

With these drops in time, however, there is also 
a concern about the accuracy of the Markov parameters 
determined from the truncated matrices. Therefore, re- 
sults from the truncation of the UUw matrix will be 
displayed. Figure 2 shows a comparison between us- 
ing the full UUw matrix versus the truncation of the 
second half of the wavelet transform as compared the 
the exact, analytical FRFs. Very little error is induced, 

by half. 

DI=O64946 

D4 = 0.Y3Y7 

D Z = l O  
D 3 = 7  66 

MI = M? =hi3 = .M4= I 
KI = K 2  = K3 E KJ= I0,coO 

ti: 

FIGURE 1: FOUR DOF SPRING-MASS SYSTEM 

The conditioning and computation time improve- though the size of the matrix for inversion is reduced 
ments to be made by a decrease in the size of the input 
matrices will now be examined. A four DOF spring- 
mass system with damping as shown in  figure 1 will 
be used for the analysis. The system is excited by 
four sinusoidal inputs of 256 time points at each of 
the DOFs. Therefore, the size of the input matrix is 

trix 1024 x 1024. 

Frequency Response lor. H I  1 

I ,  

0 5 10 15 20 25 30 35 40 45 50 
1024 x 256 ( rn  x n)  and the input auto-corrdation ma- Frequency 

30 

20 

10 

Table 1 shows both the conditioning of either 

domain and the time required to invert thc matrix. The 
times were determined using MATLAB (Mathworks, 
1989), a mathematical software package. The first row, 
Uw, refers to the wavelet transformation of the rows of 
the U matrix, and Uwl the truncation of the second half 
of the matrix. The third row contains UUw, referring to 
the row transformation of the UU’ matrix, while UUwt 
is the truncation of the second half of the transform. 
Lastly, the fifth and sixth rows, UUw2 and UUwZt, 

its truncation of half of the rows and columns. 

the input or input auto-correlation matrix in the wavelet 
$ o 
9 -10 

g-20 
-30 

-40 

0 5 10 15 20 25 30 35 40 45 50 
Frequewy 

-50 

FIGURE 2: MARKOV PARAMETERS FOR 
involve the 2D transformation of the UU’ matrix and 4 DOF SPRING-MASS SYSTEM 

TABLE 1: CONDITION VALUES AND INVERSION TIME 
FOR INPUT AND AUTOCORRELATION MATRICES 

3. FFT Approximation for Matrix Inversion 

Another method of reducing the computation 
time for the deconvolution procedure will be examined. 
FFT methods are known for their time efficiency due 
to their unique ability of transforming convolution to 
multiplication. This ability can also be used to form an 
approximate solution for the wavelet method of Markov 
parameter extraction. This is achieved by first deter- 
mining the auto and cross-correlation functions in the 
wavelet domain: 
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t 

and then applying the Fourier transform to only the top 
rows of these matrices: 

{[Y. UT]D"'T(l,l : n)}FFT - - 
hFFT . { [U . UTIDWT(1, 1 : n)JFFT 

(12) 
where the index (1, 1 : n)  represents the top row of the 
matrix. Division of the cross correlation by the auto 
correlation function may then be carried out just as it is 
done in spectral methods: 

Frequency Response lor: HI 1 

where i denotes a matrix of size s x r for both h and 
Y . UT and of size x 7- for U . UT. The formula 
is stepped through R times, the total number of time 
points. The Markov parameters are then found through 
the inverse Fourier transform of the FRFs. This is sim- 
ilar to a correlated FFT procedure described in  (Juang, 
1994), except that we are doing ensemble-averaging in 
the wavelet domain rather than the frequency. 

The approximate solution is very similar to do- 
ing the true inversion of the auto-correlation matrix, 
with only a small amount of error. Figure 3 shows 
a comparison between the standard wavelet method 
of Markov parameter extraction and the approximate. 
To see how these results compare to just the stan- 
dard Fourier transform method, figure 4 compares the 
wavelet and FFT procedures for the same example prob- 
lem found in the last section. The approximate solu- 
tion is not as accurate as the standard wavelet method, 
but still performs much better than the standard Fourier 
method. The next section will discuss the improvements 
in computation time that this procedure creates. 

Frequency Response for: H1 I 
A 

I 
0 5 10 15 20 25 30 35 40 45 50 

Frequency 
30 I 

r I I 

0 5 10 15 20 25 30 35 40 45 50 
Frequency 

-40 

FIGURE 3: MARKOV PARAMETERS OF 
4 DOF SPRING-MASS SYSTEM 
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O 5 10 15 20 25 30 35 40 45 50 
Frequency 

-- 
FIGURE 4: MARKOV PARAMETERS OF 

4 DOF SPRING-MASS SYSTEM 

4. Comparison of Computation Time for 
Time, Wavelet, and FFT Methods 

A thorough comparison will now made between 
the computation time required for the time, wavelet, and 
FFT methods. The 4 DOF spring-mass problem is once 
again used for this comparison, but with only one input 
and one output for a total of 4096 time points. En- 
semble lengths of 256, 512, and 1024 points are used. 
Two different wavelet methods, the general time do- 
main method, and the FFT method, are used to find 
the Markov parameters. The first wavelet method, re- 
ferred to as "Wavelet 1"  in  figures, involves the wavelet 
transform of the auto and cross-correlation matrices. A 
full input matrix is used for this procedure. The second 
method, referred to as "Wavelet 2" in the figures, in- 
volves the wavelet transform of the rows of the Y and 
U matrices, with the U matrix being upper triangular. 
Obviously, the Fourier method is much quicker than 
the time and wavelet methods, but the concern more is 
whether the time involved is unreasonable. 

Since the computation time for the FFT methods 
is much lower, the times for the wavelet and time meth- 
ods are normalized by the FET computation time. Fig- 
ure 5 shows a comparison of the normalized time for the  
three methods mentioned above as a function of ensem- 
ble length: 256, 512, and 1024 points. The plot shows 
the time required per ensemble as being anywhere from 
10 to 250 times greater than the FFT method, with the 
second wavelet method requiring the least amount of 
time. This plot only considers the time to create the 
auto and cross correlation matrices, i t  does not include 
the time to invert the auto-correlation matrix and then 
find the Markov parameters. This will be shown in  the 
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next plot. The steps in the three procedures that con- 
tribute most to the computation time are: the creation 
of the input matrix, which for a 256 point ensemble is 
a 256x256 matrix; the multiplication of this matrix by 
its transpose to form the auto-correlation matrix; and 
then the wavelet transform of each row or column of 
the matrices. It is important to note that these programs 
have not been optimized very well for time efficiency. 
There is much room for improvement in the time, espe- 
cially by using MEX files in MATLAB, files that call 
C functions to be more time efficient. 

Computation l ime per Ensemble Normalized by FFT Time 
1dr  

Wavelet 1 

- l ime 
- -Wavelet 2 _ - _ -  - - n  I _ _ - -  _ - - -  

10' :I - _ _ _ _ - - - -  

_ . - . -  - '  

. -  
E .  
B 

512 1024 
Poins per Ensemble 

loi!6 

FIGURE 5: COMPUTATION TIME FOR DETERMINATION 
OF AUTO AND CROSS CORRELATION MATRICES 

Figure 6 then shows how the computation time 
increases with the addition of the inversion step and the 
calculation of the Markov parameters. The total compu- 
tation time required to determine the Markov parameters 
with 4096 time points is computed with 256, 512, and 
1024 point ensembles. This means that 16, 8, and 4 
ensembles were used respectively. For comparison we 
have used the fastest of the three methods examined 
above, the "Wavelet 2" method. Once again, the time 
is normalized by the time needed for the FFT method. 
The solid line shows the time needed without the inver- 
sion, while the dashed line includes it. Obviously, there 
is a great increase in  time (more than 5 times for the 
1024 point case) when the inversion is included. 

The method of doing an approximate inversion 
via FFTs as discussed in the last section is therefore 
also analyzed. The time required for the approximate 
inversion is almost negligible as can be seen in figure 
6. To get an idea of the actual times needed for these 
procedures, the FFT method requires 12.44 seconds to 
find the Markov parameters using a 512 point ensem- 
ble, while the "Wavelet 2" method requires 234 seconds 

(about 4 minutes) when the approximate inverse is used. 
For smaller sized ensembles, the time obviously is not 
of that great of an importance, however if larger ensem- 
bles are needed, then the computation time for wavelet 
and time procedures becomes a problem. This supports 
the belief that wavelet methods are better suited when 
only a small amount of vibration data is available. 

Total Computation lime wifh Inversion Normalized by FFT l ime 

- - Wavelet 2 with Inversion 

"20% I 512 Points per Ensemble 
1024 

FIGURE 6: NORMALIZED COMPUTATION TIME FOR 
DETERMINATION OF MARKOV PARAMETERS 

5. Comparison Between Error and 
Computation Time for Model Realization 

It was shown in previous papers (Robertson, 
1996) that with a given amount of simulated data, 
wavelets are able to determine a modal model of a 
system morc accurately than FFTs. Comparisons were 
made between the error in the identified modes, mode 
shape, and damping of the system, for varying amounts 
of data. In this paper, however, i t  was shown that 
wavelet methods have a major drawback, a much larger 
computation time than FFTs. It is interesting therefore 
to examine how the improvement in accuracy weighs 
against the time needed to obtain it. 

The three parameters: modes, mode shapes, and 
damping were found using the Eigensystem Realization 
Algorithm (Juang, 1985) and are used to compare the 
amount of error in the determined model of the sys- 
tem. The 4 DOF spring-mass system with damping 
used throughout this paper is the basis of comparison, 
but with random excitation. Further analysis was done 
on other examples to support the results shown here, 
but only the random input results will be presented. For 
this example, there are 2 inputs and 4 outputs to the sys- 
tem. Based on the fastest wavelet method, it is found 
that each ensemble of the wavelet procedure takes ap- 
proximately 20 times as long as the FFT for 256 point 
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ensembles. This is higher than the results shown previ- 
ously in this paper since two inputs are used in this case 
instead of one. The time axes in  these plots are scaled 
based on this ratio of 20: 1, each ensemble for FFTs was 
given one time unit, while the wavelet was given 20. 

Error in Delermined Mode Shape vs Compulabon lime for Mode 1 

- - Wavelet 

10" 

1 0' 

10' 

-10' 
G. - - - 
0 

ae 
Y 

IO' 

lo1 

Error in Delermined Frequencies vs Compulalion iime lor Mode 1 

- - Wavelet 

I 

50 100 150 2W 250 3M) 350 

FIGURE 7: ERROR IN DETERMINED MODES 
VERSUS COMPUTATION TIME 

The first plot, 7, shows the percent error found in the 
determined frequencies or modes of the system, based 
on the amount of time taken for both wavelet and FFT 
procedures. Due to the larger amounts of time needed 
i n  the wavelet methods, the FFT and wavelet methods 
barely intersect for a reasonable amount of data, 40960 
points total. The FFT curves with more data do not 
change dramatically, while the wavelet curves do con- 
tinue to decrease for times greater than shown in these 
figures. For 40 ensembles both methods have basically 
converged to their presumed solution, though 160 is the 
last point for FFT methods shown in this graph, while 
only 20 ensembles are shown for the wavelet method. 
In this First plot, there is not a clear distinction as to 
whether using wavelets is beneficial. The wavelet er- 
ror does seem to decrease slightly, but the FFT error 
does also and at a quicker rate. It is known that the 
wavelet error continues to decrease at larger amounts of 
time, but this data is not available for the FFT method. 
Based on the intersections of these lines, it appears that 
wavelets may be able to achieve smaller amounts of er- 
ror than FFT methods ever will, but it will take more 
time to get this improvement. It should be noted that 
the % error on this graph is of log scale, so differences 
are larger than they appear. 

Compulational Effort 

FIGURE 8: ERROR IN DETERMINED MODE SHAPES 
VERSUS COMPUTATION TIME 

The % error found in  the determined mode 
shapes of the system can then be found i n  figure 5, 
also on a log scale. In this case, there seems to be a 
steady decrease in  the error with the more time taken 
for both wavelet and FFT methods, except when the 
FIT method reaches about 160 on the lime scale, after 
which the error increases. It may be difficult to tell at 
which point the error might start to increase, which can 
cause problcms i n  the realization of a system, especially 
if  the error starts rising significantly with the more data 
used. The amount of error for the wavelet method does 
decrease further for times greater than shown here, but 
i t  is evident that FFTs can obtain good estimates of the 
modes shapes with far less computation time. The er- 
ror is so low for this graph, 1x10-3% after only a few 
ensembles, that extra time need not be taken. 

Error in Damping Estimafe vs Compulalion lime lor Mode I 
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Computational Effort 

FIGURE 9: ERROR IN DETERMINED DAMPING 
VERSUS COMPUTATION TIME 
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This nice convergence is contrary to the next 
figure, 9, where the error in the damping estimates is 
given. FFT methods, as in all cases examined in this 
thesis, never seem to be able to capture the correct 
damping. Increases in time or amounts of data only 
add to the randomness of the determined damping ratio. 
Wavelets, on the other hand, do consistently get lower 
and lower damping error as more time is used. The 
damping error in  this figure is consistent, and is shown 
to give much more accurate estimates with less amount 
of time taken. 

There seems to be contradiction between the dif- 
ferent parameters as to whether FFTs or waveIet meth- 
ods are more efficient at identifying structural mod- 
els. The clear convergence or reduction of error in  the 
wavelet models indicates that one can know that with an 
increase in  the amount of data used, or time taken, that 
results will improve. This is not always true in the case 
of FFT methods. In fact, there is no clear improvement 
at all for damping estimates with an increase in data. So, 
if damping estimates are of importance, wavelet mcrh- 
ods are definitely the superior choice, otherwise, time 
efficiency versus accuracy importance must be taken 
into consideration in  the choicc of methods. . 

Conclusions 

In this paper i t  was shown that wavelets can be 
used to decrease the size of the input matrix to be in- 
verted by truncating the wavelet transform by half. This 
essentially results in the truncation of the upper half of 
the frequencies of the signal, which can be detrimen- 
tal if important information is contained in the higher 
frequencies. This procedure should only be used for 
matrices with frequencies in thelower half of the fre- 
quency band, such as correlation matrices. Both the 
decrease in conditioning and size of the input matri- 
ces allows for a quicker solution of the deconvolution 
problem using wavelets. To further decrease the time 
needed for wavelet methods, an approximation method 
for the inversion of the input matrices was introduced. 
This method was able to effectively invert the input ma- 
trix in a fraction of the original time with only a small 
change in the determined Markov parameters. 

A thorough comparison of the time required for 
the time, wavelet, and Fourier methods was then made. 
It was found that certain wavelet methods without any 
truncation or approximation techniques require less time 
than the general time domain method. Inversion of the 
input matrix was found to add considerable time to the 
overall process, so if possible, the approximated inverse 
method should be used. The increase in time for wavelet 
methods as compared to the FFT was anywhere from 

w 

10-250 times greater, depending largely on the size of 
ensemble and the number of inputs used. 

of time required and the resultant error in the deter- 
mined modal model. There was no clear conclusion as 
to whether wavelets were more effective than FFT meth- 
ods. For some parameters, the FlT method was able to 
get lower amounts of error in less time, but in other 
cases the WT method could get lower error than ever 
obtained by FFT methods. Damping was shown con- 
clusively to belong to WT methods, with the increase in 
time or amount of data not improving the FFT results 
at all. This paper also demonstrated the steady conver- 
gence of error by wavelet methods with an increase in  
amount of data or time used. In general, the trade-offs 
between the accuracy obtained versus the computation 
time required are up to the user to decide. 

A comparison was then made between the amount 
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