Mechanical properties and shear failure surfaces of two alumina powders in triaxial compression

PDF Version Also Available for Download.

Description

In the manufacture of ceramic components, near-net-shape parts are commonly formed by uniaxially pressing granulated powders in rigid dies. Density gradients that are introduced into a powder compact during press-forming often increase the cost of manufacturing, and can degrade the performance and reliability of the finished part. Finite element method (FEM) modeling can be used to predict powder compaction response, and can provide insight into the causes of density gradients in green powder compacts; however, accurate numerical simulations require accurate material properties and realistic constitutive laws. To support an effort to implement an advanced cap plasticity model within the finite ... continued below

Physical Description

42 p.

Creation Information

ZEUCH,DAVID H.; GRAZIER,J. MARK; ARGUELLO JR.,JOSE G. & EWSUK,KEVIN G. April 24, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In the manufacture of ceramic components, near-net-shape parts are commonly formed by uniaxially pressing granulated powders in rigid dies. Density gradients that are introduced into a powder compact during press-forming often increase the cost of manufacturing, and can degrade the performance and reliability of the finished part. Finite element method (FEM) modeling can be used to predict powder compaction response, and can provide insight into the causes of density gradients in green powder compacts; however, accurate numerical simulations require accurate material properties and realistic constitutive laws. To support an effort to implement an advanced cap plasticity model within the finite element framework to realistically simulate powder compaction, the authors have undertaken a project to directly measure as many of the requisite powder properties for modeling as possible. A soil mechanics approach has been refined and used to measure the pressure dependent properties of ceramic powders up to 68.9 MPa (10,000 psi). Due to the large strains associated with compacting low bulk density ceramic powders, a two-stage process was developed to accurately determine the pressure-density relationship of a ceramic powder in hydrostatic compression, and the properties of that same powder compact under deviatoric loading at the same specific pressures. Using this approach, the seven parameters that are required for application of a modified Drucker-Prager cap plasticity model were determined directly. The details of the experimental techniques used to obtain the modeling parameters and the results for two different granulated alumina powders are presented.

Physical Description

42 p.

Notes

OSTI as DE00754326

Medium: P; Size: 42 pages

Source

  • Journal Name: Journal of Materials Science; Other Information: Submitted to Journal of Materials Science

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-1030J
  • Report No.: 0000035204-000
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 754326
  • Archival Resource Key: ark:/67531/metadc710991

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 24, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2017, 3:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

ZEUCH,DAVID H.; GRAZIER,J. MARK; ARGUELLO JR.,JOSE G. & EWSUK,KEVIN G. Mechanical properties and shear failure surfaces of two alumina powders in triaxial compression, article, April 24, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc710991/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.