Ultrafast scanning tunneling microscopy using a photoexcited low-temperature-grown gallium arsenide tips

PDF Version Also Available for Download.

Description

The invention of the scanning tunneling microscope (STM) revolutionized the field of surface science, enabling the first images of surface structure on an atomic length scale. In the quest for both atomic spatial and temporal resolution several groups have integrated an ultrafast optoelectronic switch which gates the current from the tip, achieving picosecond time resolution. In this paper, the authors describe a novel STM tip consisting of a cleaved GaAs substrate with a 1-{micro}m thick epilayer of low-temperature-grown GaAs (LT-GaAs) deposited on the face. Since the LT-GaAs has a carrier lifetime of 1 ps, photoexcitation of the tip with an ... continued below

Physical Description

10 p.

Creation Information

Donati, G.P.; Some, D.; Rodriguez, G. & Taylor, A.J. February 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 30 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Los Alamos National Laboratory
    Publisher Info: Los Alamos National Lab., Materials Science and Technology Div., NM (United States)
    Place of Publication: New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The invention of the scanning tunneling microscope (STM) revolutionized the field of surface science, enabling the first images of surface structure on an atomic length scale. In the quest for both atomic spatial and temporal resolution several groups have integrated an ultrafast optoelectronic switch which gates the current from the tip, achieving picosecond time resolution. In this paper, the authors describe a novel STM tip consisting of a cleaved GaAs substrate with a 1-{micro}m thick epilayer of low-temperature-grown GaAs (LT-GaAs) deposited on the face. Since the LT-GaAs has a carrier lifetime of 1 ps, photoexcitation of the tip with an ultrafast, above-bandgap pulse both provides carriers for the tunneling current and photoconductively gates (with ps resolution) the current from the tip. They use this tip to detect picosecond transients on a coplanar stripline and demonstrate a temporal resolution of 1.2 ps in tunneling mode.

Physical Description

10 p.

Notes

OSTI as DE98004480

Source

  • International quantum electronics conference, San Francisco, CA (United States), 4-7 May 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98004480
  • Report No.: LA-UR--97-4700
  • Report No.: CONF-980547--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 671874
  • Archival Resource Key: ark:/67531/metadc710910

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 3, 2016, 1:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 30

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Donati, G.P.; Some, D.; Rodriguez, G. & Taylor, A.J. Ultrafast scanning tunneling microscopy using a photoexcited low-temperature-grown gallium arsenide tips, article, February 1, 1998; New Mexico. (digital.library.unt.edu/ark:/67531/metadc710910/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.