Pilot-Scale Equipment Development
For Pyrochemical Reduction of Spent Oxide Fuel*

by

S.D. Herrmann, R.W. King, K.R. Durstine, and C.S. Eberle

Engineering Division
Argonne National Laboratory-West
P. O. Box 2528
Idaho Falls, Idaho 83403-2528

To be Submitted for Presentation at
22ND Annual Actinide Separations Conference
in
Chattanooga, TN
April 20 - 23, 1998

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded spent metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic, and metal waste forms. Equipment is being developed at ANL which will precondition irradiated oxide fuel and demonstrate the application of electrometallurgical conditioning to such non-metallic fuels as well.

The oxide reduction process preconditions irradiated oxide fuel such that uranium and transuranic (TRU) constituents are chemically reduced into metallic form via a molten Li/LiCl-based reduction system. In this form the spent fuel is further conditioned in an electrefiner and waste handling equipment, thereby placing the uranium, TRU elements, and fissions products into stable forms suitable for placement in a long-term repository. Development of the Li/LiCl-based oxide reduction process has proceeded at lab- (nominally 50 grams of heavy metal (HM)) and engineering-scale (nominally 10-kg of HM) for unirradiated oxide fuel. This paper/presentation will describe the process and equipment design for scale-up from lab- and engineering-scale reduction of unirradiated oxide fuel in gloveboxes to pilot-scale (up to 100-kg of HM) reduction of irradiated oxide fuel in a hot cell.