Impurity enrichment and radiative enhancement using induced SOL flow in DIII-D

PDF Version Also Available for Download.

Description

Experiments on DIII-D have demonstrated the efficacy of using induced scrap-off-layer (SOL) flow to preferentially enrich impurities in the divertor plasma. This SOL floe is produced through simultaneous deuterium gas injection at the midplane and divertor exhaust. Using this SOL flow, an improvement in enrichment (defined as the ratio of impurity fraction in the divertor to that in the plasma core) has been observed for all impurities in trace-level experiments (i.e., impurity level is non-perturbative), with the degree of improvement increasing with impurity atomic number. In the case of argon, exhaust gas enrichment using modest SOL flow is as high ... continued below

Physical Description

22 p.

Creation Information

Wade, M.R.; West, W.P. & Wood, R.D. July 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

  • Wade, M.R. Lawrence Livermore National Lab., CA (United States)
  • West, W.P. General Atomics, San Diego, CA (United States)
  • Wood, R.D. Oak Ridge National Lab., TN (United States)

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Experiments on DIII-D have demonstrated the efficacy of using induced scrap-off-layer (SOL) flow to preferentially enrich impurities in the divertor plasma. This SOL floe is produced through simultaneous deuterium gas injection at the midplane and divertor exhaust. Using this SOL flow, an improvement in enrichment (defined as the ratio of impurity fraction in the divertor to that in the plasma core) has been observed for all impurities in trace-level experiments (i.e., impurity level is non-perturbative), with the degree of improvement increasing with impurity atomic number. In the case of argon, exhaust gas enrichment using modest SOL flow is as high as 17. Using this induced SOL flow technique and argon injection, radiative plasmas have been produced that combine high radiation losses (P{sub rad}/P{sub input} > 70%), low core fuel dilution (Z{sub eff} < 1.9), and good core confinement ({tau}{sub E} > 1.0 {tau}{sub E,ITER93H}).

Physical Description

22 p.

Notes

INIS; OSTI as DE98006156

Source

  • 13. international conference on plasma surface interactions, San Diego, CA (United States), 18-22 May 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98006156
  • Report No.: GA--A22874
  • Report No.: CONF-980560--
  • Grant Number: AC03-89ER51114;AC05-96OR22464;AC02-76CH03073;FG03-95ER54294;W-7405-ENG-48
  • DOI: 10.2172/319793 | External Link
  • Office of Scientific & Technical Information Report Number: 656761
  • Archival Resource Key: ark:/67531/metadc710873

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Aug. 1, 2016, 6:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wade, M.R.; West, W.P. & Wood, R.D. Impurity enrichment and radiative enhancement using induced SOL flow in DIII-D, article, July 1998; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc710873/: accessed July 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.