Theory and models of material erosion and lifetime during plasma instabilities in a tokamak environment.

PDF Version Also Available for Download.

Description

Surface and structural damage to plasma-facing components (PFCs) due to the frequent loss of plasma confinement remains a serious problem for the tokamak reactor concept. The deposited plasma energy causes significant surface erosion, possible structural failure, and frequent plasma contamination. Surface damage consists of vaporization, spallation, and liquid splatter of metallic materials. Structural damage includes large temperature increases in structural materials and at the interfaces between surface coatings and structural members. To evaluate the lifetimes of plasma-facing materials and nearby components and to predict the various forms of damage that they experience, comprehensive models (contained in the HEIGHTS computer simulation ... continued below

Physical Description

38 p.

Creation Information

Hassanein, A. & Konkashbaev, I. November 8, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Surface and structural damage to plasma-facing components (PFCs) due to the frequent loss of plasma confinement remains a serious problem for the tokamak reactor concept. The deposited plasma energy causes significant surface erosion, possible structural failure, and frequent plasma contamination. Surface damage consists of vaporization, spallation, and liquid splatter of metallic materials. Structural damage includes large temperature increases in structural materials and at the interfaces between surface coatings and structural members. To evaluate the lifetimes of plasma-facing materials and nearby components and to predict the various forms of damage that they experience, comprehensive models (contained in the HEIGHTS computer simulation package) are developed, integrated self-consistently, and enhanced. Splashing mechanisms such as bubble boiling and various liquid magnetohydrodynamic instabilities and brittle destruction mechanisms of nonmelting materials are being examined. The design requirements and implications of plasma-facing and nearby components are discussed, along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

Physical Description

38 p.

Notes

INIS; OSTI as DE00750484

Medium: P; Size: 38 pages

Source

  • 5th International Symposium on Fusion Nuclear Technology, Rome (IT), 09/19/1999--09/24/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/TD/CP-99581
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 750484
  • Archival Resource Key: ark:/67531/metadc710858

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 8, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2017, 2:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hassanein, A. & Konkashbaev, I. Theory and models of material erosion and lifetime during plasma instabilities in a tokamak environment., article, November 8, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc710858/: accessed September 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.