Diesel Emission Reduction By On-Board Fuel Reformulation. Final Report

PDF Version Also Available for Download.

Description

In this Phase 1 proposal, four tasks were investigated: plasma reforming in the mode of energy neutral reforming, testing in a diesel engine with hydrogen injection (port-injection), analysis of the data, and system analysis. It was demonstrated that it is feasible using a compact microplasmatron fuel converter to obtain near energy neutral reforming. Hydrogen addition was used in a compression ignition engine and a factor of 10 decrease in the particulate size concentration and mass was achieved.

Physical Description

35 p.

Creation Information

Jassby, D. L.; Rabinovich, A.; Bromberg, L. & Domingo, N. March 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In this Phase 1 proposal, four tasks were investigated: plasma reforming in the mode of energy neutral reforming, testing in a diesel engine with hydrogen injection (port-injection), analysis of the data, and system analysis. It was demonstrated that it is feasible using a compact microplasmatron fuel converter to obtain near energy neutral reforming. Hydrogen addition was used in a compression ignition engine and a factor of 10 decrease in the particulate size concentration and mass was achieved.

Physical Description

35 p.

Notes

OSTI as DE00755409

Medium: P; Size: 35 pages

Source

  • Other Information: PBD: 1 Mar 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG02-99ER82923
  • DOI: 10.2172/755409 | External Link
  • Office of Scientific & Technical Information Report Number: 755409
  • Archival Resource Key: ark:/67531/metadc710765

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 1, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2017, 1:46 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Jassby, D. L.; Rabinovich, A.; Bromberg, L. & Domingo, N. Diesel Emission Reduction By On-Board Fuel Reformulation. Final Report, report, March 1, 2000; United States. (digital.library.unt.edu/ark:/67531/metadc710765/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.