Fracture analysis of the NESC-1 spinning cylinder experiment

PDF Version Also Available for Download.

Description

This paper presents finite-element analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The objective of the NESC-1 project is to focus on a complete process for assessing the structural integrity of aged reactor pressure vessels. A new cylinder specimen was reconstituted from segments of the previously tested SC-4 and SC-6 specimens because the relatively high fracture toughness of the original specimen might preclude achieving the test objectives. Also, the initial and coolant temperatures for the proposed thermal shock may be reduced as much as 25 C to increase ... continued below

Physical Description

6 p.

Creation Information

Keeney, J.A. & Bass, B.R. June 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This paper presents finite-element analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The objective of the NESC-1 project is to focus on a complete process for assessing the structural integrity of aged reactor pressure vessels. A new cylinder specimen was reconstituted from segments of the previously tested SC-4 and SC-6 specimens because the relatively high fracture toughness of the original specimen might preclude achieving the test objectives. Also, the initial and coolant temperatures for the proposed thermal shock may be reduced as much as 25 C to increase the probability of achieving cleavage initiation. Analyses were carried out to determine the combined effects of increasing the wall thickness and lowering the initial and coolant temperatures in the experiment. Estimates were made of the change in hoop strain on the clad inner surface directly above a subclad crack due to initiation and axial propagation of the crack. Three-dimensional finite-element models of the cladded cylinder were generated with 6:1 and 2:1 semielliptical 70-mm-deep subclad cracks. The cylinder specimen was subjected to thermal-shock and centrifugal loading conditions and analyzed with a thermo-elastic-plastic material model. The analytical results indicate that lowering the initial and coolant temperatures by 25 C will not significantly change the peak driving force, but will shift the stress-intensity factor (K{sub I}) vs temperature curves so that the crack will become critical at an earlier time in the transient. The peak K{sub I} value occurs at a lower temperature which increases the probability of achieving cleavage initiation.

Physical Description

6 p.

Notes

INIS; OSTI as DE95013203

Source

  • Joint American Society of Mechanical Engineers (ASME)/Japan Society of Mechanical Engineers (JSME) pressure vessels and piping conference, Honolulu, HI (United States), 23-27 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95013203
  • Report No.: CONF-950740--47
  • Grant Number: AC05-84OR21400
  • DOI: 10.2172/73016 | External Link
  • Office of Scientific & Technical Information Report Number: 73016
  • Archival Resource Key: ark:/67531/metadc710742

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 8, 2016, 12:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Keeney, J.A. & Bass, B.R. Fracture analysis of the NESC-1 spinning cylinder experiment, report, June 1, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc710742/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.