USER’S MANUAL

The Underwater Coincidence Counter for Plutonium Measurements in Mixed-Oxide Fuel Assemblies

G. W. Eccleston
H. O. Menlove
M. Abhold
M. Baker
J. Pecos

*International Atomic Energy Agency, Wagnerstrasse, Vienna, A-1200, AUSTRIA
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
APPENDICES
A. PWR Fuel Array Mockup .. A-1
B. UWCC Measurements of Fresh PWR MOX Fuel in Unborated Water B-1
C. UWCC Measurements of Fresh PWR MOX Fuel in Borated Water C-1
D. UWCC Measurements of Fresh PWR MOX Fuel in Air D-1
E. UWCC Cross-Calibration Data ... E-1
F. UWCC User Procedures .. F-1
G. INCC Setup and Operational Steps for UWCC Measurements G-1
LIST OF FIGURES

Figure 1. UWCC positioned around the Los Alamos PWR MOX fuel assembly to provide plutonium verification measurements underwater...2

Figure 2. Underwater Coincidence Counter (UWCC)...3

Figure 3. UWCC forks showing polyethylene and the cabling to the 3He neutron detectors.4

Figure 4. Wiring from 3He tubes to the PDT-210A Amplifier...4

Figure 5. PSR-B multiplicity shift register connected to the UWCC signal summer box...........5

Figure 6. Calibration curve for PWR MOX fuel verifications in borated water using INCC-corrected doubles measurement data...5

Figure 7. UWCC detector high-voltage bias plateau curve...6

Figure 8. Doubles rate versus the coincidence gate width for the UWCC in air with a 252Cf source and in water from a PWR MOX fuel assembly..8

Figure 9. Relative statistical error for the doubles rate versus gate setting for 252Cf in air and for a PWR MOX fuel assembly in water...9

Figure 10. UWCC neutron singles, doubles, and multiplication-corrected doubles response vs position (cm) of the PWR MOX fuel assembly along the length of the UWCC arms..10

Figure 11. UWCC cross-calibration geometry and 252Cf source-holding fixture.....................11

Figure 12. The UWCC gate fraction vs dieaway time for gates of 64 and 128 µs.......................12

Figure 13. MCNP simulation of UWCC measurements on a 17 x 17 MOX PWR fuel assembly with and without a cadmium cover...13

Figure 14. Doubles gate ratio (D_{64}/D_{128}) vs boron concentration..14

Figure 15. Mol PWR MOX fuel array positioned underwater in the UWCC. Two rows of fuel pins are removed from the array..14

Figure 16. UWCC calibration geometry with the Los Alamos 15-pin x 15-pin MOX fuel assembly...15
Figure 17. Multiplication-corrected neutron doubles (D_{mc}) for PWR MOX fuel arrays in Mol, Belgium, and Los Alamos in unborated water.

Figure 18. Neutron triples and doubles/10 versus $^{240}\text{Pu}_{\text{eff}}$ for PWR MOX fuel in 2200-ppm borated water.

Figure 19. Neutron doubles (D) and multiplication corrected neutron doubles (D_{mc}) for PWR MOX fuel arrays in Mol, Belgium, and Los Alamos in 2200-ppm borated water.

Figure 20. Multiplication corrected neutron doubles calibration for a PWR MOX fuel array in Mol, Belgium, Los Alamos, and inspection field measurements in 2200-ppm borated water.

Figure 21. Neutron doubles and multiplication corrected doubles calibration for PWR MOX fuel in air.
LIST OF TABLES

Table I. UWCC Helium-3 Detector Specifications ... 4
Table II. UWCC Measurement Parameters Setup ... 6
Table III. Californium (Cf7) UWCC Dieaway Time Measurements in Air 7
Table IV. UWCC Dieaway Time Measurements for a PWR MOX Assembly in Water 8
Table V. UWCC Multiplication Constants ... 11
Table VI. 252Cf (Cf-8) Reference Rates for Cross-Calibration ... 12
Table VII. Mol MOX Fuel Isotopics .. 14
Table VIII. Los Alamos MOX Fuel Isotopics ... 15
USER’S MANUAL

THE UNDERWATER COINCIDENCE COUNTER
FOR PLUTONIUM MEASUREMENTS IN MIXED-OXIDE FUEL ASSEMBLIES

by

G. W. Eccleston, H. O. Menlove, M. Abhold, M. Baker, and J. Pecos

ABSTRACT

This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency 3He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the 239Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual.
INTRODUCTION

The use of fresh uranium-plutonium mixed-oxide (MOX) fuel in light-water reactors is increasing in Europe and Japan, and it is important for inspectors to verify the plutonium content in the fuel for international safeguards purposes. Therefore, an improved underwater coincidence counter (UWCC), shown in Fig. 1, has been developed to verify fresh MOX fuel subassemblies in air or underwater at reactor storage ponds. The UWCC can be configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies.

![UWCC positioned around the Los Alamos PWR MOX fuel assembly to provide plutonium verification measurements underwater.](image)

The UWCC uses high-efficiency 3He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. The neutron counting rate is analyzed for singles (S), doubles (D), and triples (T) time correlations to determine the 240Pu effective mass, as well as the reactivity of the fuel assembly. The UWCC can verify the plutonium loading per unit length to a precision of under 1% in a measurement time of 2 to 3 minutes.

Calibration of the UWCC was determined through measurements of MOX fuel in Mol, Belgium, and in Los Alamos. The Mol fuel array allowed calibration measurements up to 240Pu effective loadings of 6.8 g/cm. The Los Alamos MOX fuel allowed the calibration to be extended up to a 240Pu effective loading of 14.83 g/cm.

This manual provides the design specifications, performance tests, operational parameters, and preliminary calibration information for the UWCC.
UWCC DESIGN

The UWCC design was based on MCNP calculations. These calculations attempted to determine the effects of cadmium and to specify the front and back dimensions of polyethylene located around the detectors, which optimize efficiency while reducing the effect of boron concentration. The goals of the UWCC development were:

- underwater partial defect verifications (<6% 1 sigma) on fresh MOX fuel assemblies,
- stainless-steel cladding for improved decontamination,
- measurement time less than 5 minutes per assembly,
- configurable for measurements of BWR and PWR MOX fuel subassemblies,
- insensitivity to detector positioning around a fuel assembly,
- use of standard neutron coincidence shift-register electronics and assay software, and
- compatible size and weight for transportation, field setup, and use.

The selected design for the UWCC (shown in Fig. 2) consists of eight 7.5-atmosphere 3He neutron detectors embedded in polyethylene, with 2.5 cm of polyethylene in front and 3.8 cm behind the detectors. Four detectors are located in each of the UWCC forks. The polyethylene is wrapped in cadmium and located in a watertight stainless-steel enclosure. A stainless-steel bellows allows signal cables to be connected between the detectors and the UWCC pipe and preamplifier. A stainless-steel backplate contains a pipe holding the PDT-210A dual AMPTEK preamplifier. Stainless steel is used on all external components for decontamination.

In addition to providing improved decontamination, the stainless shell also protects the cadmium liner, which is positioned around the high-density polyethylene on the inside of the shell. The stainless shell is watertight and sealed with standard stainless-steel screws and O rings, permitting measurements to be performed underwater.
To decrease the UWCC sensitivity to varying boron concentrations in the water, we placed a 0.5-mm liner of cadmium inside the stainless-steel forks which completely surrounds the polyethylene containing the detectors. For gamma-ray shielding and neutron absorption, the cadmium liner thickness was increased to 1.0 mm in the location directly between the fuel assembly and the 3He tubes. The cadmium-covered polyethylene contains the 3He detectors, as shown in Fig. 3. Each of the UWCC forks contain four 3He tubes with the specifications listed in Table I.

PREAMPLIFIER
(PDT-210A)

The UWCC uses a dual-channel PDT-210A amplifier with one AMPTEK channel for four 3He detectors. Figure 4 shows the wiring between the 3He tubes and the PDT-210A amplifier. The detectors are cross-wired between the two forks and each AMPTEK channel collects signals from two detectors in each fork. The cable length between the 3He tubes and the PDT-210A amplifier is approximately 45 mm. The amplifier output pulse is set for 50 ns. The distance between the PDT-210A and the shift register should be 20 m or less.

A signal summer box, shown in Fig. 5, connects the PDT-210A to the shift-register electronics. The summer box passes HV and +5V from the shift-register module to the PDT-210A and ORs the output of the two digital pulses to produce one pulse stream, which is then fed into the shift register.
Commercial shift-register products meeting the requirements for UWCC neutron multiplicity/coincidence measurements with the INCC program are the Advanced Multiplicity Shift Register from Ortec, and the PSR and PSR-B modules from Aquila Technologies. The PSR-B module is shown in Fig. 5.

The UWCC functions with older coincidence shift-register electronics such as the JSR-11 and JSR-12. Measurements of the neutron singles (S) and doubles (D) are provided by these units. A two-parameter analysis provides fuel-assembly verification but lacks triples flags. Triples measurements are obtained from multiplicity measurements. These also provide information indicating whether measurement conditions are appropriate to declared conditions.

The UWCC is operated using the Integrated Neutron Coincidence Counting (INCC) software program. The program communicates with a shift register through the serial port of a PC computer. The INCC program controls the shift register, sets UWCC operational parameters, and receives neutron singles, doubles, and multiplicity signals. These signals are collected by the shift register.

The INCC program analyzes the UWCC measurement data and displays the results within a few seconds from the time each measurement is completed. Count rates are corrected for detector dead time. The neutron doubles, D, are corrected for multiplication using the known-alpha method. The UWCC measurements provide underwater verification of the 240Pu effective rate of fresh MOX fuel based on a calibration curve, shown in Fig. 6.

Fig. 5. PSR-B multiplicity shift register connected to the UWCC signal summer box.

Fig. 6. Calibration curve for PWR MOX fuel verifications in borated water using INCC-corrected doubles measurement data.
HIGH-VOLTAGE PLATEAU

Before measuring the high-voltage plateau for the UWCC, the two PDT-210A channels were matched to have the same gain. Figure 7 shows the plateau curves for channels A and B for the 3He tubes (RS-P4-0811-105). The PDT-210A preamplifier allows the UWCC high-voltage operating bias to be the standard 1680 volts used for safeguards neutron-measurement systems.

DEAD TIME

The counting rates for the UWCC are high (approximately 100 kHz) for MOX fuel assemblies, which causes a significant electronic deadtime effect. The dead time was measured using two 252Cf sources that had a known absolute ratio of neutron emission rates. The ratio for sources Cf-10 to Cf-4 is 55.6. The deadtime equations for corrected rates for the singles and doubles are given by

$$S(\text{corr.}) = S(\text{meas})e^{\delta t}$$
$$D(\text{corr.}) = D(\text{meas})e^{\delta t}$$

where

$$\delta = (a + b \cdot S \cdot 10^{-6}) \mu s$$

and the deadtime parameters $a/b = 1$. The measurement parameters required for the INCC program under the “Setup” heading are listed in Table II.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UWCC1</th>
<th>UWCC2</th>
<th>UWCC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Length</td>
<td>μsec</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>High Voltage</td>
<td>HV</td>
<td>1680</td>
<td>1680</td>
</tr>
<tr>
<td>Dieaway Time (air)</td>
<td>τ, μs</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Efficiency</td>
<td>ε</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Multiplicity Dead Time</td>
<td>d</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Deadtime Coefficient A</td>
<td>A</td>
<td>2.15</td>
<td>2.18</td>
</tr>
<tr>
<td>Deadtime Coefficient B</td>
<td>B</td>
<td>2.15</td>
<td>2.18</td>
</tr>
<tr>
<td>Deadtime Coefficient C</td>
<td>C</td>
<td>35</td>
<td>30.5</td>
</tr>
<tr>
<td>Doubles-Gate Fraction</td>
<td>fg</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Triples-Gate Fraction</td>
<td>tg</td>
<td>0.49</td>
<td>0.49</td>
</tr>
</tbody>
</table>
MULTIPLICITY DEAD TIME

For multiplicity analysis, the deadtime corrections are done with the equations derived by Dytlewski4 using a constant deadtime value \(d \). The value of \(d \) was determined by measuring several \(^{252}\text{Cf}\) sources with different neutron source strengths. The triples/doubles multiplicity ratio should be independent of the neutron source strength after deadtime correction. The value of \(d \) that gave the best agreement was the maximum value:

\[
d = 500 \text{ ns.}
\]

A multiplicity dead time of 500 ns requires a shift-register gate setting of 64 \(\mu \text{s} \) or larger. The additional multiplicity deadtime coefficient \(C \) was required for units UWCC1 and UWCC2.

NEUTRON DIEAWAY TIME

The neutron dieaway time \(\tau \) of the UWCC was measured using source \(^{252}\text{Cf}\). Table III lists the gate widths and the doubles rates and errors. The resulting dieaway time in air is approximately 37 \(\mu \text{s} \) for a gate setting of 64 \(\mu \text{s} \).

<table>
<thead>
<tr>
<th>Gate Length ((\mu \text{s}))</th>
<th>Parameter</th>
<th>UWCC1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Singles, cps</td>
<td>17898</td>
</tr>
<tr>
<td></td>
<td>Doubles, cps</td>
<td>2260</td>
</tr>
<tr>
<td></td>
<td>(D_{\text{err}}, \sigma %)</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>(\tau, \mu \text{s})</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Singles, cps</td>
<td>17899</td>
</tr>
<tr>
<td></td>
<td>Doubles, cps</td>
<td>3200</td>
</tr>
<tr>
<td></td>
<td>(D_{\text{err}}, \sigma %)</td>
<td>0.281</td>
</tr>
<tr>
<td></td>
<td>(\tau, \mu \text{s})</td>
<td>36.5</td>
</tr>
<tr>
<td>128</td>
<td>Singles, cps</td>
<td>17902</td>
</tr>
<tr>
<td></td>
<td>Doubles, cps</td>
<td>3803</td>
</tr>
<tr>
<td></td>
<td>(\tau, \mu \text{s})</td>
<td>38.6</td>
</tr>
</tbody>
</table>

Boron in the pool affects the multiplication of the MOX fuel assembly, which in turn affects the dieaway time of the system. Measurements at two dieaway time gate settings can confirm the boron content in a pool. Figure 8 shows the doubles rate versus the gate width for a \(^{252}\text{Cf}\) source in air (bottom curve) and a PWR assembly in unborated water (top curve).

In addition to the measurements for a \(^{252}\text{Cf}\) source in air, the dieaway time was measured for a PWR MOX fuel assembly in pure water at Los Alamos. This information is provided in Table IV. The dieaway time increases from
approximately 38 μs for ^{252}Cf in air to approximately 78 μs for a MOX assembly in pure water. The reason for the increase is the long neutron-multiplication fission chains that occur when a MOX fuel assembly is placed underwater. The induced fissions from multiplication add several neutron-thermalization time intervals to the dieaway time.

Figure 8 shows a graph of the normalized doubles rate as a function of gate width for a ^{252}Cf source in air and a MOX assembly in pure water with the data normalized to unity for at the 32-μs gate width.

<table>
<thead>
<tr>
<th>Gate Length (usec)</th>
<th>Parameter</th>
<th>UWCC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Singles, cps</td>
<td>100490</td>
</tr>
<tr>
<td></td>
<td>Doubles, cps</td>
<td>5995</td>
</tr>
<tr>
<td></td>
<td>D_{en}, $\sigma%$</td>
<td>1.264</td>
</tr>
<tr>
<td></td>
<td>τ, μs</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>Singles, cps</td>
<td>100540</td>
</tr>
<tr>
<td></td>
<td>Doubles, cps</td>
<td>10137</td>
</tr>
<tr>
<td></td>
<td>D_{en}, $\sigma%$</td>
<td>1.144</td>
</tr>
<tr>
<td></td>
<td>τ, μs</td>
<td>-86</td>
</tr>
<tr>
<td>128</td>
<td>Singles, cps</td>
<td>14258</td>
</tr>
<tr>
<td></td>
<td>Doubles, cps</td>
<td>3803</td>
</tr>
<tr>
<td></td>
<td>τ, μs</td>
<td>1.259</td>
</tr>
<tr>
<td></td>
<td>τ, μs</td>
<td>-71</td>
</tr>
</tbody>
</table>
Figure 9 shows the relative counting statistical error versus the gate length for the same cases (air and water). The error is a minimum for a gate setting at approximately 80 µs in water.

For the case of MOX fuel in borated water, the dieaway time is slightly higher than for air (approximately 40 µs). Since most MOX fuel assemblies are stored in borated water, we have chosen a gate setting of 64 µs for applications of the UWCC to MOX fuel assemblies. A gate increase to 128 µs would result in a doubling of the counting time needed to obtain the same counting statistics obtained for the 64-µs gate.

EFFICIENCY

The efficiency of the UWCC was measured by placing a calibrated 252Cf source in the center of the active zone. The measured efficiency in air was 3.6% (PWR mode) for a 252Cf point source centered in the UWCC. For the BWR geometry, the efficiency for a 252Cf source in air increases because the two forks are moved closer together compared to the PWR configuration, resulting in an efficiency of 5.1%. Because of the extended geometry and the neutron absorption in the water, the average efficiency for spontaneous fission neutrons emitted over the geometry of a fuel assembly will be considerably less than this value.

The 3He tubes in the UWCC have active lengths of 280 mm compared with 152 mm for the modified fork. The extra length was designed to provide more efficiency and to make the counting rate less sensitive to the movement of the fuel assembly relative to the fork during the measurement. The primary drawback to these larger fork arms is the increased weight for the UWCC.

The nylon bumper on the back of the UWCC is used to position fuel assemblies in the center of the maximum counting profile. The bumper has two positions, which are determined by a set screw. The bumper is extended for BWR assemblies and retracted for PWR assemblies.
Tests were performed to determine the change in counting rate as a function of moving the fuel assembly away from the bumper and out of the measurement area of the forks (see Fig. 10.) A 2-cm gap between the fuel and the bumper results in an approximately 1% change in the D_{mc} rate. Both the totals and the doubles rates have larger variations with position than the D_{mc}. The plutonium calibration is based on the D_{mc} rate.

![Graph showing neutron singles, doubles, and multiplication-corrected doubles response vs position (cm) of the PWR MOX fuel assembly along the length of the UWCC arms.](image)

Fig. 10. UWCC neutron singles, doubles, and multiplication-corrected doubles response vs position (cm) of the PWR MOX fuel assembly along the length of the UWCC arms.

MULTIPLICATION CONSTANT For the conventional two-parameter known-alpha analysis of neutron coincidence data, the constant ρ_o represents a nonmultiplying sample and is defined as:

$$\rho_o = \frac{R}{T}(1 + \alpha)$$

where α is the calculated ratio of alpha-particle-induced neutrons to spontaneous-fission neutrons. Because R is directly proportional to the gate fraction f_s for the doubles rate, we have ρ_o at an approximate efficiency of f_s. We cannot measure ρ_o because we do not have a nonmultiplying fuel assembly with the geometry of a PWR or BWR fuel assembly. The value of ρ_o is directly proportional to the efficiency; therefore, the higher efficiency of the BWR configuration will result in a higher ρ_o for BWRs than for PWRs.

The value of ρ_o can be determined using MCNP calculations to obtain the neutron leakage multiplication (M_L) of the assembly in water. The ρ_o is selected to give agreement between the MCNP value of M_L and the two-parameter analysis of M_L.

10
In Table V, we have used the same value of ρ_o for air, pure water, and borated water for a given fuel type to provide consistency during setup of the INCC program and for field measurements. Actually, ρ_o increases as the boron in the water increases because the boron shortens the dieaway time and results in a larger fraction of neutrons appearing within the gate width.

The MCNP-REN analysis of the PWR MOX fuel assembly provides values for ρ_o that vary from 0.014 for unborated water to 0.020 for 2200 ppm of boron. The boron concentration can be checked and estimated using the doubles ratio from two gate measurements when a MOX fuel assembly is being measured. We have selected a single ρ_o value corresponding to 2200-ppm boron concentration. The ρ_o is selected to give the true M_6 for the assembly in borated water. Since the majority of fresh MOX fuel assemblies are stored in approximately 2200-ppm borated water, the borated water value of ρ_o was used.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BWR</th>
<th>PWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_o in air</td>
<td>0.026</td>
<td>0.019</td>
</tr>
<tr>
<td>f_0 in air</td>
<td>0.75@64 (\mu)s</td>
<td>0.75@64 (\mu)s</td>
</tr>
<tr>
<td>ρ_o in pure water</td>
<td>0.026</td>
<td>0.019</td>
</tr>
<tr>
<td>f_0 in pure water</td>
<td>0.53@64 (\mu)s</td>
<td>0.53@64 (\mu)s</td>
</tr>
<tr>
<td>ρ_o in 2200 ppm B</td>
<td>0.026</td>
<td>0.019</td>
</tr>
<tr>
<td>f_0 in 2200 ppm B</td>
<td>0.73@64 (\mu)s</td>
<td>0.73@64 (\mu)s</td>
</tr>
</tbody>
</table>

CROSS-CALIBRATION

Calibrating the UWCC using a MOX fuel assembly allows other UWCCs to be cross-calibrated using a 252Cf source positioned in the center of the UWCC. A reference count rate for cross-calibration is obtained by placing a 252Cf source with a calibrated neutron-emission rate at the center of the UWCC active zone (see Fig. 11). The rates are listed in Table VI for both PWR and

![252Cf source](image)

Fig. 11. UWCC cross-calibration geometry and 252Cf source-holding fixture.
BWR geometries. The data in Table VI are also corrected for dead time. The UWCC parameters used for the measurements are listed in Table IV.

When performing a cross-calibration, care must be taken to avoid neutron reflection from the table or floor supporting the UWCC. The UWCC should be positioned about one meter above the floor and at least a meter away from the walls. A metal pushcart was used to support the UWCC when collecting the cross-calibration data shown in Table VI. A special fixture, shown in Fig. 11, is supplied with the UWCC to hold the 252Cf source in the center of the active zone. The fixture adjusts to both BWR and PWR geometries.

<table>
<thead>
<tr>
<th>Table VI. 252Cf (Cf-8) Reference Rates for Cross-Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWCC Configuration</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>PWR</td>
</tr>
<tr>
<td>BWR</td>
</tr>
</tbody>
</table>

BORON EFFECTS The multiplication constant ρ_0 is dependent on the boron in the water because the boron decreases the die-away time (τ) for neutrons in the fuel assembly. This decrease in τ results in an increase in the gate fraction f_g given by:

$$f_g = e^{-PD/\tau}(1 - e^{-G/\tau})$$

where

- $PD = \text{pre-delay (3 \, \mu s)}$,
- $G = \text{gate length (64 \, \mu s)}$, and
- $\tau = \text{die-away time}$.

Figure 12 shows a plot of f_g versus τ for the UWCC for gate lengths of 32, 64, and 128 \, \mu s. The τ values for pure water and borated water were measured for a PWR MOX assembly and the values are indicated in Fig. 12. The resulting changes in the f_g values change the effective ρ_0 by approximately 37%.

Fig. 12. The UWCC gate fraction vs dieaway time for gates of 64 and 128 \, \mu s.
BORON EFFECTS ON UWCC MEASUREMENTS

Spent-fuel storage ponds have boron contents that range from zero to several thousand ppm, with most ponds containing approximately 2200 ppm. Increasing the boron concentration in a spent-fuel pond increases the neutron absorption rate, reducing the number of neutrons emitted from a MOX fuel assembly that reach the UWCC and resulting in a lower counting rate. This rate change causes a calibration change that is a function of the boron concentration. Surrounding the UWCC with a cadmium layer removes thermal neutrons that are similar to boron as they enter the UWCC, reducing the effect of varying boron concentrations. Figure 13 shows the UWCC neutron singles rate as a function of boron concentration from a 17-pin X 17-pin MOX PWR fuel assembly. The MCNP results are plotted for the UWCC with and without cadmium. Cadmium covering the UWCC flattens the efficiency response compared to no cadmium, and it reduces the efficiency changes due to changing boron concentration. The UWCC-measured D_{mc} in Fig. 13 is relatively flat (between 1000- and 2250-ppm boron), indicating that two D_{mc} calibration curves are sufficient for the UWCC to cover unborated and borated ponds.

Figure 13 is a plot of the correlation between the boron concentration and the doubles coincidence ratio (64-μs/128-μs gates) measured by the UWCC on a 17 X 17 PWR MOX fuel assembly.

BORON CONCENTRATION MEASUREMENT

For MOX fuel assemblies stored underwater, the boron content can be confirmed from a dieaway time ratio measurement when a fuel assembly is located in the UWCC. The boron concentration in parts per million is determined with the UWCC by measuring a fuel assembly at two shift-register gate settings. This is possible since the boron concentration affects the die-away time and not the efficiency of the UWCC. The shift-register gate settings are changed in the INCC program in the “Measurement Parameters,” located under the “Settings” file menu. The normal doubles-rate measurement, D_{64}, takes place with a 64-μs gate setting. If a second doubles-rate measurement, D_{128}, of approximately 5 minutes is made with a second shift-register gate setting of 128 μs, then the boron concentration can be determined.
The doubles gate ratios, \(D_{64}/D_{128} \), confirm the boron concentrations as shown in Fig. 14. The doubles gate ratio is expected to be approximately 0.79 for a boron concentration of 2200 ppm.

Fig. 14. Doubles gate ratio \((D_{64}/D_{128}) \) vs boron concentration.

Figure 15 shows the UWCC positioned around the PWR MOX fuel array in Mol, Belgium. The active length of the plutonium in the Mol fuel rods is 50 cm. The isotopics for the fuel are given in Table VII.

MOL FUEL DESCRIPTION

Fig. 15. Mol PWR MOX fuel array positioned underwater in the UWCC. Two rows of fuel pins are removed from the array.

Table VII. Mol MOX Fuel Isotopics

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16-Jan-1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{238}\text{Pu})</td>
<td>0.054 %</td>
<td></td>
</tr>
<tr>
<td>(^{239}\text{Pu})</td>
<td>81.218 %</td>
<td></td>
</tr>
<tr>
<td>(^{240}\text{Pu})</td>
<td>17.582 %</td>
<td></td>
</tr>
<tr>
<td>(^{241}\text{Pu})</td>
<td>0.689 %</td>
<td></td>
</tr>
<tr>
<td>(^{242}\text{Pu})</td>
<td>0.456 %</td>
<td></td>
</tr>
<tr>
<td>(^{244}\text{Am})</td>
<td>2.432 %</td>
<td></td>
</tr>
<tr>
<td>(^{240}\text{Pu}_{\text{eff}})</td>
<td>0.02575 g/cm/pin</td>
<td>MOX Array 15 x 15 = 204 pins</td>
</tr>
<tr>
<td>(^{240}\text{Pu}_{\text{eff}})</td>
<td>6.798 g/cm/array</td>
<td></td>
</tr>
</tbody>
</table>
The Los Alamos PWR MOX fuel assembly is a 15-pin X 15-pin array, shown in Fig. 16. (Refer also to Appendix A.) The isotopic specifications for the MOX rods are listed in Table VIII below. For the full 204-rod array (204 fuel rods and 21 empty control-rod channels) the linear plutonium loading is 14.83 g $^{240}\text{Pu}_{\text{eff}}$/cm. The UWCC is 17.3 cm tall and it is sensitive to the fuel for about 10 cm beyond the top and bottom of the detector arms. The measured fuel region extends over a height of about 37 cm. In the case of the Los Alamos MOX fuel assembly, this corresponds to approximately 2.5 kg of plutonium.

Table VIII. Los Alamos MOX Fuel Isotopes

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{235}Pu</td>
<td>0.673 %</td>
</tr>
<tr>
<td>^{239}Pu</td>
<td>77.580 %</td>
</tr>
<tr>
<td>^{240}Pu</td>
<td>17.799 %</td>
</tr>
<tr>
<td>^{241}Pu</td>
<td>2.367 %</td>
</tr>
<tr>
<td>^{242}Pu</td>
<td>1.581 %</td>
</tr>
<tr>
<td>^{241}Am</td>
<td>4.734 %</td>
</tr>
</tbody>
</table>

$^{240}\text{Pu}_{\text{eff}}$ $= 0.0727$ g/cm/pin

MOX Array $= 15 \times 15 = 204$ pins

$^{240}\text{Pu}_{\text{eff}}$ $= 14.83$ g/cm/array

Fig. 16. UWCC calibration geometry with the Los Alamos 15-pin X 15-pin MOX fuel assembly.

CALIBRATION

Calibration of the UWCC was obtained from measurements of MOX fuel rods located at the SCK-CEN facility in Mol, Belgium and at Los Alamos. These measurements provide calibration data for two different types of MOX fuel rods and fuel arrays. The calibrations at Mol were performed in pure water and for five boron concentrations (530, 909, 1540, 2160, and 2250 ppm). Both PWR (17-pin X 17-pin array) and BWR (9-pin X 9-pin array) fuel arrays were used for the measurements at the VENUS facility. Borated and unborated calibrations were performed at Los Alamos. The Los Alamos PWR MOX fuel array is a 15 X 15 configuration and the fuel contains more than twice the plutonium (14.83 g $^{240}\text{Pu}_{\text{eff}}$/cm) compared to the Mol fuel array (6.80 g $^{240}\text{Pu}_{\text{eff}}$/cm).

MOX PIN REMOVAL

The effects of plutonium loss through pin-removal load were determined starting with full MOX arrays. The full MOX fuel arrays in Mol, Belgium (17 X 17 = 264 pins) and in Los Alamos (15 X 15 = 204 pins) were measured. Pins were then removed from selected interior rows to reduce the plutonium content. Measurements were made for the case where water replaced the MOX rods. One set of measurements were collected with UO$_2$ fuel rods (containing a depleted-uranium content of 0.2%) replacing the MOX rods. The neutron singles and neutron doubles rates are dependent on the specific
configurations. The multiplication correction removes this dependence. The multiplication-corrected neutron doubles rate versus the 240Pu-effective content is a straight line.

Figure 17 shows the the D_{mc} rate versus the 240Pu-effective linear loadings in unborated water. The same ρ_0 (0.19) was used for both the fresh water and the borated water calibration measurements. This value of ρ_0 is required for verification measurements when using the calibration curve in Fig. 17. The limited length of the Mol MOX fuel (50 cm) shows an end effect that has been corrected using MCNP calculations that extend the fuel to a length of 130 cm. The end effect is negligible for the borated water case.

Figure 18 compares the triples with doubles for the Los Alamos MOX fuel array which was measured in 1500-ppm boron and extrapolated to 2200-ppm boron. The triples precision is 2–4% in 10 minutes. Counting periods of about 10 minutes might be required to make quantitative use of the triples count. The triples rate as a function of the 240Pu-effective mass is shown in Fig. 18. The ratio of T/D and T/S could be used to resolve anomalous results or differences between the calibration condition and the field condition. The ratio of T/D approximately equal to e and T/S approximately equal to e^2 is a function of the efficiency and the size and configuration of the fuel assembly that could be evaluated using these ratios.
Plutonium-calibration measurements are based on the D_{mc} results shown in Fig. 17 for pure water and Figs. 19 and 20 for borated water. The LANL MOX fuel array was measured in 500-, 1000-, and 1500-ppm boron and the data were extrapolated to the 2200-ppm boron values shown in Fig. 19. Figure 20 contains measurement data for field inspection trials of PWR MOX fuels which have much larger loadings plutonium compared to the Mol and LANL MOX calibration pins. The calibration data in Fig. 20 provide a straight calibration line through the origin, $D_{mc} = 24.1 x$, which is dependent on the multiplication constant ρ_o. We estimated the ρ_o listed in Table V for PWR assemblies to be 0.19. The same ρ_o must be used for calibration and subsequent assay, and its absolute value is important only where the multiplication M must be correctly determined.

Fig. 19. Neutron doubles (D) and multiplication corrected neutron doubles (D_{mc}) for PWR MOX fuel arrays in Mol, Belgium and Los Alamos in 2200-ppm borated water.

Fig. 20. Multiplication corrected neutron doubles calibration for a PWR MOX fuel array in Mol, Belgium, Los Alamos and inspection field measurements in 2200-ppm borated water.
UWCC AIR MEASUREMENTS

The UWCC can measure MOX fuel in air to verify the 240Pu$_{\text{eff}}$ content in a manner similar to the passive neutron coincidence collar. We calibrated the UWCC in air using the Mol and Los Alamos MOX fuel assemblies. The Mol fuel pins are 50 cm in active length and show an end effect compared to the 177.8 cm active-length fuel rods at Los Alamos. The neutron doubles and D$_{mc}$ from air measurements are shown in Fig. 21. The D$_{mc}$ precision is better than 1% in 10 min. The line has a negative intercept because rod removal decreases both the plutonium source term and the efficiency from neutron back-scattering from the ends of the fuel rods. The triples rate in air is low (8 ± 7 cps) so the T measurement would require very long counting times, so is generally not useful.

![Figure 21. Neutron doubles and multiplication corrected doubles calibration for PWR MOX fuel in air.](image)

CALIBRATION RESULTS

The UWCC measures full arrays of MOX rods and is able to verify if MOX rods have been removed. Calibration results for full arrays of MOX rods in 2200 ppb boron go through origin and have a linear line of D$_{mc}$ = 24.1 x.

In most of the calibration configurations where pins were removed, water replaced the space from a rod removal. However, for two of the configurations, low-enriched uranium rods (3.3% 235U) were substituted for the MOX rods. The effects of these pin changes are detected by UWCC measurements.

The plutonium verification measurements are normally based on the D$_{mc}$ calibration, and the counting precision for D$_{mc}$ is better than 1% in 1 to 2 minutes. Two-parameter analysis using the known-alpha correction technique removes multiplication effects from the doubles measurements. For cases where LEU-fuel pins are substituted for MOX-fuel pins, the known-alpha correction removes the multiplication effect created by the LEU pins and permits verification of assemblies even in the presence of LEU-pin substitution. Additionally, the measurement uncertainties required for two-parameter analyses can be obtained within about one order-of-magnitude reduction of counting time compared to the time needed to measure the triples.
SUMMARY

The UWCC can be used to measure the $^{240}\text{Pu}_{\text{eff}}$ per unit length in PWR and BWR MOX fuel assemblies stored under water or in air. Verifications are based on calibration curves of D_{mc} versus $^{240}\text{Pu}_{\text{eff}}$ per unit length. This correction produces a straight-line calibration curve and has been determined from measurements on two different MOX fuel arrays. The statistical precision for D_{mc} is better than 1% for a two-minute count. The UWCC can detect the removal of approximately 1% of the plutonium for a relative measurement and 2–3% of the plutonium for an absolute measurement, depending on how closely the unknown matches the calibration assembly.

The D_{mc} calibration makes the measurements relatively insensitive to differences between the calibration condition and the field condition. The calibration is insensitive to the number of fuel rods, diameter, pitch, cladding, and LEU content. Separate calibrations are required for pure water and borated water. If separate ρ_o values corresponding to pure and borated water measurements are used, then the calibrations will overlap. To limit the potential for error in measurements and reduce the chance of an inconsistent ρ_o value, the same value (Table V) is recommended for all measurements.

The appropriate calibration curve (borated versus unborated) is selected based on the operator's boron declaration. The boron loading can be verified by calculating the doubles ratio (see Fig. 14) from a measurement on a fuel assembly with two gate settings of 64 to 128 μs.

ACKNOWLEDGMENTS

The work reported in this manual was supported by the United States Department of Energy/International Safeguards Division (DOE/NN-44) and the United States Program of Technical Assistance (POTAS) to the International Atomic Energy Agency (IAEA).

REFERENCES

1. Precision Data Technology Corporation, Everett, Washington.

APPENDICES

A. PWR Fuel Array Mockup
B. UWCC Measurements of Fresh PWR MOX Fuel in Unborated Water
C. UWCC Measurements of Fresh PWR MOX Fuel in Borated Water
D. UWCC Measurements of Fresh PWR MOX Fuel in Air
E. UWCC Cross-Calibration Data
F. UWCC User Procedures
G. INCC Setup and Operational Steps for UWCC Measurements
Appendix A: PWR Fuel Array Mockup

Los Alamos 15 X 15 PWR Fuel Array

ONMLKJIHGFEDCBA

● SUPPORT

UWCC Positioning Bumper
Appendix A: PWR Fuel Array Mockup

Mol 17 x 17 PWR Fuel Array

Q P O N M L K J I H G F E D C B A

SUPPORT

UWCC Positioning Bumper
Appendix B: UWCC Measurements of Fresh PWR MOX Fuel in Unborated Water

UWCC Measurements of PWR MOX fuel in unborated water

<table>
<thead>
<tr>
<th>UWCC Measurements of PWR MOX fuel in unborated water</th>
<th>Fuel Type</th>
<th>Number of MOX Rods</th>
<th>Pu Linear Density (g/cm)</th>
<th>240Pu eff Linear Density (g/cm)</th>
<th>Gate Width (μm)</th>
<th>Measure Time (sec)</th>
<th>Total Rate (νμeV)</th>
<th>Total Rate Error (νμeV)</th>
<th>Double Rate (νμeV)</th>
<th>Double Rate Error (νμeV)</th>
<th>Triple Rate (νμeV)</th>
<th>Triple Rate Error (νμeV)</th>
<th>Multiplication Corrected Double Rate (νμeV)</th>
<th>Multiplication Corrected Double Rate Error (νμeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR Full Array 264 MOX pins 59 cm Rod length</td>
<td>Mol</td>
<td>264</td>
<td>36.77</td>
<td>6.80</td>
<td>64</td>
<td>960</td>
<td>4001</td>
<td>7.9</td>
<td>5619.8</td>
<td>20.9</td>
<td>1224.2</td>
<td>23.9</td>
<td>197.88</td>
<td>0.29</td>
</tr>
<tr>
<td>PWR 17 MOX pins removed from Row G</td>
<td>Mol</td>
<td>247</td>
<td>34.41</td>
<td>6.36</td>
<td>64</td>
<td>3800</td>
<td>3844</td>
<td>3.9</td>
<td>5647.3</td>
<td>10.1</td>
<td>1156.4</td>
<td>11.3</td>
<td>190.04</td>
<td>0.14</td>
</tr>
<tr>
<td>PWR 33 MOX pins removed from Row G, Column 7</td>
<td>Mol</td>
<td>231</td>
<td>32.18</td>
<td>5.95</td>
<td>64</td>
<td>600</td>
<td>3647</td>
<td>9.6</td>
<td>5281.7</td>
<td>23.9</td>
<td>1081.1</td>
<td>26.1</td>
<td>181.31</td>
<td>0.34</td>
</tr>
<tr>
<td>PWR 215 MOX Pins 33 pins removed from Row G, Col 7</td>
<td>Mol</td>
<td>215</td>
<td>29.95</td>
<td>5.54</td>
<td>64</td>
<td>600</td>
<td>3467</td>
<td>9.3</td>
<td>4988.8</td>
<td>22.6</td>
<td>979.6</td>
<td>24.1</td>
<td>172.88</td>
<td>0.32</td>
</tr>
<tr>
<td>PWR 17 LEU (3.3%) pins placed in row G</td>
<td>Mol</td>
<td>247</td>
<td>34.41</td>
<td>6.36</td>
<td>64</td>
<td>600</td>
<td>3783</td>
<td>9.8</td>
<td>5222.5</td>
<td>24.9</td>
<td>1147.4</td>
<td>27.7</td>
<td>187.52</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Increase Mol Measurements based on MCNP-REN ratio of Mol 130cm/50cm Fuel length

<table>
<thead>
<tr>
<th>Increase Mol Measurements based on MCNP-REN ratio of Mol 130cm/50cm Fuel length</th>
<th>Fuel Type</th>
<th>Number of MOX Rods</th>
<th>Pu Linear Density (g/cm)</th>
<th>240Pu eff Linear Density (g/cm)</th>
<th>Gate Width (μm)</th>
<th>Measure Time (sec)</th>
<th>Total Rate (νμeV)</th>
<th>Total Rate Error (νμeV)</th>
<th>Double Rate (νμeV)</th>
<th>Double Rate Error (νμeV)</th>
<th>Triple Rate (νμeV)</th>
<th>Triple Rate Error (νμeV)</th>
<th>Multiplication Corrected Double Rate (νμeV)</th>
<th>Multiplication Corrected Double Rate Error (νμeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR Full Array 264 MOX pins 130 cm Rod length</td>
<td>Mol</td>
<td>264</td>
<td>36.77</td>
<td>6.80</td>
<td>64</td>
<td>960</td>
<td>4001</td>
<td>7.9</td>
<td>5619.2</td>
<td>20.9</td>
<td>1224.2</td>
<td>23.9</td>
<td>197.88</td>
<td>0.29</td>
</tr>
<tr>
<td>PWR 17 MOX pins removed from Row G</td>
<td>Mol</td>
<td>247</td>
<td>34.41</td>
<td>6.36</td>
<td>64</td>
<td>3800</td>
<td>3844</td>
<td>3.9</td>
<td>5647.3</td>
<td>10.1</td>
<td>1156.4</td>
<td>11.3</td>
<td>190.04</td>
<td>0.14</td>
</tr>
<tr>
<td>PWR 33 MOX pins removed from Row G, Column 7</td>
<td>Mol</td>
<td>231</td>
<td>32.18</td>
<td>5.95</td>
<td>64</td>
<td>600</td>
<td>3647</td>
<td>9.6</td>
<td>5281.7</td>
<td>23.9</td>
<td>1081.1</td>
<td>26.1</td>
<td>181.31</td>
<td>0.34</td>
</tr>
<tr>
<td>PWR 215 MOX Pins 33 pins removed from Row G, Col 7</td>
<td>Mol</td>
<td>215</td>
<td>29.95</td>
<td>5.54</td>
<td>64</td>
<td>600</td>
<td>3467</td>
<td>9.3</td>
<td>4988.8</td>
<td>22.6</td>
<td>979.6</td>
<td>24.1</td>
<td>172.88</td>
<td>0.32</td>
</tr>
<tr>
<td>PWR 17 LEU (3.3%) pins placed in row G</td>
<td>Mol</td>
<td>247</td>
<td>34.41</td>
<td>6.36</td>
<td>64</td>
<td>600</td>
<td>3783</td>
<td>9.8</td>
<td>5222.5</td>
<td>24.9</td>
<td>1147.4</td>
<td>27.7</td>
<td>187.52</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Appendix C. UWCC Measurements of Fresh PWR MOX Fuel in Borated Water.

<table>
<thead>
<tr>
<th>UWCC Measurements of PWR MOX fuel at 1500 and 2200 ppm Boron Concentrations</th>
<th>Fuel Type</th>
<th>MOX Rods</th>
<th>Pu Linear Density (g/cm²)</th>
<th>240Pu/Pu Linear Density (g/cm²)</th>
<th>Boron (ppm)</th>
<th>Gate Width (ns)</th>
<th>Measure Time (sec)</th>
<th>Total Rate (c/s)</th>
<th>Total-Rate Error (c/s)</th>
<th>Doubles Rate (c/s)</th>
<th>Doubles-Rate Error (c/s)</th>
<th>Triples Rate (c/s)</th>
<th>Triples-Rate Error (c/s)</th>
<th>Multiplication Corrected Doubles Rate (c/s)</th>
<th>Multiplication Corrected Doubles-Rate Error (c/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR 2100 ppm Boron 17 MOX pins removed from Row G</td>
<td>Mol</td>
<td>264</td>
<td>36.77</td>
<td>6.89</td>
<td>2250</td>
<td>64</td>
<td>900</td>
<td>26111</td>
<td>6.2</td>
<td>2255.6</td>
<td>12.5</td>
<td>332.1</td>
<td>11.8</td>
<td>158.97</td>
<td>0.34</td>
</tr>
<tr>
<td>PWR 2100 ppm Boron 33 MOX pins removed Row G, Col</td>
<td>Mol</td>
<td>215</td>
<td>29.95</td>
<td>5.54</td>
<td>2250</td>
<td>64</td>
<td>600</td>
<td>19351</td>
<td>6.3</td>
<td>1322.3</td>
<td>10.9</td>
<td>139.9</td>
<td>8.8</td>
<td>128.39</td>
<td>0.39</td>
</tr>
<tr>
<td>PWR 1500 ppm Boron 18 MOX pins removed Row 7</td>
<td>LANL</td>
<td>204</td>
<td>67.235096</td>
<td>14.83</td>
<td>1500</td>
<td>64</td>
<td>750</td>
<td>83631</td>
<td>12.4</td>
<td>6901.9</td>
<td>46.0</td>
<td>961.8</td>
<td>60.2</td>
<td>385.62</td>
<td>0.04</td>
</tr>
<tr>
<td>PWR 1500 ppm Boron 22 pins removed Row 7, Col G</td>
<td>LANL</td>
<td>127</td>
<td>57.677165</td>
<td>12.72</td>
<td>1500</td>
<td>64</td>
<td>750</td>
<td>65688</td>
<td>10.7</td>
<td>4546.9</td>
<td>34.5</td>
<td>534.5</td>
<td>46.8</td>
<td>322.65</td>
<td>0.87</td>
</tr>
<tr>
<td>PWR 1500 ppm Boron, 41 pins removed Row 7, Col G</td>
<td>LANL</td>
<td>163</td>
<td>53.72216</td>
<td>11.85</td>
<td>1500</td>
<td>64</td>
<td>750</td>
<td>58183</td>
<td>10.0</td>
<td>3735.4</td>
<td>30.0</td>
<td>359.3</td>
<td>38.6</td>
<td>293.47</td>
<td>0.83</td>
</tr>
</tbody>
</table>

MCNP-REN Calculations and Extrapolations

<table>
<thead>
<tr>
<th>Borated water PWR MOX fuel</th>
<th>Fuel Type</th>
<th>MOX Rods</th>
<th>Pu Linear Density (g/cm²)</th>
<th>240Pu/Pu Linear Density (g/cm²)</th>
<th>Boron (ppm)</th>
<th>Gate Width (ns)</th>
<th>Measure Time (sec)</th>
<th>Total Rate (c/s)</th>
<th>Total-Rate Error (c/s)</th>
<th>Doubles Rate (c/s)</th>
<th>Doubles-Rate Error (c/s)</th>
<th>Triples Rate (c/s)</th>
<th>Triples-Rate Error (c/s)</th>
<th>Multiplication Corrected Doubles Rate (c/s)</th>
<th>Multiplication Corrected Doubles-Rate Error (c/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol Array 264 MOX pins 120cm Rod Length</td>
<td>Mol</td>
<td>264</td>
<td>36.77</td>
<td>6.89</td>
<td>2250</td>
<td>64</td>
<td>26304</td>
<td>55.0</td>
<td>1972</td>
<td>115.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extend to 130cm 17 MOX pins removed from Row G</td>
<td>Mol</td>
<td>247</td>
<td>34.41</td>
<td>6.35</td>
<td>2250</td>
<td>64</td>
<td>23735</td>
<td>7.0</td>
<td>1591</td>
<td>13.4</td>
<td>239.8</td>
<td>11.8</td>
<td>155.77</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Extend to 130cm 33 MOX pins removed Row G, Col 7</td>
<td>Mol</td>
<td>231</td>
<td>32.18</td>
<td>5.95</td>
<td>2250</td>
<td>64</td>
<td>21342</td>
<td>2.5</td>
<td>1561</td>
<td>4.6</td>
<td>181.8</td>
<td>3.9</td>
<td>145.26</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Extend to 130cm 48 MOX pins removed Row G Col 7, 11</td>
<td>Mol</td>
<td>215</td>
<td>29.95</td>
<td>5.54</td>
<td>2250</td>
<td>64</td>
<td>19694</td>
<td>6.3</td>
<td>1162</td>
<td>10.0</td>
<td>139.9</td>
<td>8.8</td>
<td>135.99</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Extrapolize 1500 ppm Measurement to 2200 ppm Boron</td>
<td>LANL</td>
<td>204</td>
<td>67.235096</td>
<td>14.83</td>
<td>2200</td>
<td>64</td>
<td>750</td>
<td>77656</td>
<td>5605.0</td>
<td>622.3</td>
<td>372.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrapolate to 2200 ppm boron, 15 MOX pins removed Row</td>
<td>LANL</td>
<td>189</td>
<td>62.291339</td>
<td>13.74</td>
<td>1500</td>
<td>64</td>
<td>750</td>
<td>66878</td>
<td>4203.4</td>
<td>382.0</td>
<td>332.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrapolate to 2200 ppm boron, 29 pins removed Row 7, Col G</td>
<td>LANL</td>
<td>175</td>
<td>57.677165</td>
<td>12.72</td>
<td>1500</td>
<td>64</td>
<td>750</td>
<td>59386</td>
<td>3291.8</td>
<td>265.4</td>
<td>307.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrapolate to 2200 ppm boron, 41 pins removed Row 7, Col G</td>
<td>LANL</td>
<td>163</td>
<td>53.72216</td>
<td>11.85</td>
<td>1500</td>
<td>64</td>
<td>750</td>
<td>52083</td>
<td>2561.6</td>
<td>117.0</td>
<td>279.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: UWCC Measurements of Fresh PWR MOX Fuel in Air.

<table>
<thead>
<tr>
<th>Air Measurement</th>
<th>Fuel Type</th>
<th>Number of MOX Rods</th>
<th>Pu Linear Density (g/cm)</th>
<th>240Pu/eff Linear Density (g/cm)</th>
<th>Gate Width (us)</th>
<th>Measure Time (sec)</th>
<th>Totals Rate (c/s)</th>
<th>Totals Rate Error (c/s)</th>
<th>Doubles Rate (c/s)</th>
<th>Doubles Rate Error (c/s)</th>
<th>Triples Rate (c/s)</th>
<th>Triples Rate Error (c/s)</th>
<th>Multip Correct Doubles Rate (c/s)</th>
<th>Multip Correct Doubles Rate Error (c/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR Full Array</td>
<td>Mol</td>
<td>264</td>
<td>36.77</td>
<td>6.80</td>
<td>64</td>
<td>600</td>
<td>18054</td>
<td>5.7</td>
<td>343.5</td>
<td>9.1</td>
<td>8.2</td>
<td>6.8</td>
<td>180.2</td>
<td>1.3</td>
</tr>
<tr>
<td>PWR 17 MOX pins removed from Row G</td>
<td>Mol</td>
<td>247</td>
<td>34.41</td>
<td>6.36</td>
<td>64</td>
<td>5580</td>
<td>16441</td>
<td>1.8</td>
<td>309.7</td>
<td>2.7</td>
<td>7.6</td>
<td>1.9</td>
<td>164.4</td>
<td>0.4</td>
</tr>
<tr>
<td>PWR 33 MOX pins removed from Row G, Col 7</td>
<td>Mol</td>
<td>231</td>
<td>32.18</td>
<td>5.95</td>
<td>64</td>
<td>4520</td>
<td>15242</td>
<td>1.9</td>
<td>285.2</td>
<td>2.7</td>
<td>10.0</td>
<td>1.9</td>
<td>152.7</td>
<td>0.4</td>
</tr>
<tr>
<td>PWR 204 pin full array</td>
<td>LANL</td>
<td>204</td>
<td>67.23</td>
<td>14.83</td>
<td>64</td>
<td>1050</td>
<td>61075</td>
<td>7.6</td>
<td>782.0</td>
<td>22.0</td>
<td>8.1</td>
<td>37.5</td>
<td>493.7</td>
<td>4.1</td>
</tr>
<tr>
<td>PWR 15 MOX pins removed from Row 7</td>
<td>LANL</td>
<td>189</td>
<td>62.29</td>
<td>13.74</td>
<td>64</td>
<td>1050</td>
<td>55110</td>
<td>9.4</td>
<td>665.0</td>
<td>21.4</td>
<td>15.3</td>
<td>30.4</td>
<td>451.0</td>
<td>4.2</td>
</tr>
<tr>
<td>PWR 29 MOX pins removed from Row 7, Col G</td>
<td>LANL</td>
<td>175</td>
<td>57.68</td>
<td>12.72</td>
<td>64</td>
<td>1050</td>
<td>50602</td>
<td>6.0</td>
<td>600.7</td>
<td>18.1</td>
<td>25.3</td>
<td>18.9</td>
<td>415.5</td>
<td>3.6</td>
</tr>
<tr>
<td>PWR 42 MOX pins removed Row 7 and 10, Col G</td>
<td>LANL</td>
<td>163</td>
<td>53.72</td>
<td>11.85</td>
<td>64</td>
<td>1050</td>
<td>46092</td>
<td>7.9</td>
<td>490.4</td>
<td>18.3</td>
<td>5.7</td>
<td>20.3</td>
<td>366.8</td>
<td>18.3</td>
</tr>
</tbody>
</table>

NOTE: Rod count on the measurements in rows 11 and 12 was off. There are 41 rods out with row 7,10 and col G pulled.

* MOX rod in one position in col. G
Appendix E. UWCC Cross-calibration Data.

Note: Cross-calibrations in air should be performed with the UWCC unit sitting on a cart and away from surfaces that would bias the cross-calibration measurements caused by neutron reflections.

UWCC measurements in 1500 ppm boron on the LANL PWR 204 pin MOX Fuel Array

<table>
<thead>
<tr>
<th>Detector</th>
<th>High Voltage (V)</th>
<th>Pre Delay (us)</th>
<th>Gate Width (us)</th>
<th>Dead time A (us)</th>
<th>Dead time B (us)</th>
<th>PWR fuel MOX Rods</th>
<th>Boron ppm</th>
<th>240Pu eff Linear Density (g/cm)</th>
<th>Assay Time (sec)</th>
<th>Totals Rate (c/s)</th>
<th>Totals Rate Error (c/s)</th>
<th>Doubles Rate (c/s)</th>
<th>Doubles Rate Error (c/s)</th>
<th>Doubles Ratios UWCCx/UWCC3</th>
<th>Triplcs Rate (c/s)</th>
<th>Triplcs Rate Error (c/s)</th>
<th>Multiplication Corrected Doubles Rate Error (c/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWCC1</td>
<td>1740</td>
<td>3</td>
<td>64</td>
<td>2.6</td>
<td>2.6</td>
<td>204</td>
<td>1500</td>
<td>14.83</td>
<td>750</td>
<td>85671</td>
<td>12.7</td>
<td>47.9</td>
<td>1.027</td>
<td>1268.8</td>
<td>91.5</td>
<td>389.14</td>
<td>0.96</td>
</tr>
<tr>
<td>UWCC2</td>
<td>1680</td>
<td>3</td>
<td>64</td>
<td>1.92</td>
<td>1.92</td>
<td>204</td>
<td>1500</td>
<td>14.83</td>
<td>700</td>
<td>84826</td>
<td>12.9</td>
<td>48.2</td>
<td>0.988</td>
<td>959.9</td>
<td>73.4</td>
<td>389.34</td>
<td>1.00</td>
</tr>
<tr>
<td>UWCC3</td>
<td>1680</td>
<td>3</td>
<td>64</td>
<td>1.9</td>
<td>1.9</td>
<td>204</td>
<td>1500</td>
<td>14.83</td>
<td>750</td>
<td>83631</td>
<td>12.4</td>
<td>46.0</td>
<td>1.000</td>
<td>1022.5</td>
<td>70.4</td>
<td>380.22</td>
<td>0.93</td>
</tr>
<tr>
<td>UWCC2</td>
<td>1680</td>
<td>3</td>
<td>128</td>
<td>1.92</td>
<td>1.92</td>
<td>204</td>
<td>1500</td>
<td>14.83</td>
<td>750</td>
<td>84712</td>
<td>12.5</td>
<td>69.9</td>
<td>1.004</td>
<td>1666.8</td>
<td>145.5</td>
<td>352.76</td>
<td>1.06</td>
</tr>
<tr>
<td>UWCC3</td>
<td>1680</td>
<td>3</td>
<td>128</td>
<td>1.9</td>
<td>1.9</td>
<td>204</td>
<td>1500</td>
<td>14.83</td>
<td>750</td>
<td>83624</td>
<td>12.4</td>
<td>68.9</td>
<td>1.000</td>
<td>1684.7</td>
<td>144.7</td>
<td>347.08</td>
<td>1.03</td>
</tr>
</tbody>
</table>

a The UWCC received an upgraded preamp (PDT21O-A), compared to the original model, to increase gain and allow the high voltage (HV) to be lowered from 1740 volts to the standard 1680 volts used for coincidence counting measurements. UWCC-1 that was delivered to the IAEA corresponds to the cross-reference data for Cf-8 in air.

UWCC measurements in air on a wood benchtop b using 252Cf source number 8

<table>
<thead>
<tr>
<th>Detector</th>
<th>Pre Delay (us)</th>
<th>Gate Width (us)</th>
<th>Dead time (us)</th>
<th>PWR fuel MOX Rods</th>
<th>Boron ppm</th>
<th>240Pu eff Linear Density (g/cm)</th>
<th>Assay Time (sec)</th>
<th>Totals Rate (c/s)</th>
<th>Totals Rate Error (c/s)</th>
<th>Doubles Rate (c/s)</th>
<th>Doubles Rate Error (c/s)</th>
<th>Doubles Ratios UWCCx/UWCC3</th>
<th>Triplcs Rate (c/s)</th>
<th>Triplcs Rate Error (c/s)</th>
<th>Multiplication Corrected Doubles Rate Error (c/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWCC1</td>
<td>1680</td>
<td>3</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>1000</td>
<td>5988</td>
<td>0.7</td>
<td>254.0</td>
<td>0.7</td>
<td>0.972</td>
<td>4.6</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>UWCC2</td>
<td>1680</td>
<td>3</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>1000</td>
<td>5816</td>
<td>1.0</td>
<td>247.4</td>
<td>0.7</td>
<td>0.950</td>
<td>4.4</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>UWCC3</td>
<td>1680</td>
<td>3</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
<td>1000</td>
<td>6046</td>
<td>1.4</td>
<td>261.1</td>
<td>1.3</td>
<td>1.000</td>
<td>5.1</td>
<td>0.6</td>
<td>-</td>
</tr>
</tbody>
</table>

b Cross-calibrations are biased if performed on different benchtops, or benchtop positions, where the neutron reflection is changed.

UWCC measurements in air on a metal Cart c using 252Cf source number 8

<table>
<thead>
<tr>
<th>Detector</th>
<th>Pre Delay (us)</th>
<th>Gate Width (us)</th>
<th>Dead time (us)</th>
<th>PWR fuel MOX Rods</th>
<th>Boron ppm</th>
<th>240Pu eff Linear Density (g/cm)</th>
<th>Assay Time (sec)</th>
<th>Totals Rate (c/s)</th>
<th>Totals Rate Error (c/s)</th>
<th>Doubles Rate (c/s)</th>
<th>Doubles Rate Error (c/s)</th>
<th>Doubles Ratios UWCCx/UWCC3</th>
<th>Triplcs Rate (c/s)</th>
<th>Triplcs Rate Error (c/s)</th>
<th>Multiplication Corrected Doubles Rate Error (c/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UWCC1</td>
<td>1680</td>
<td>3</td>
<td>64</td>
<td>2.15</td>
<td>2.15</td>
<td>N/A</td>
<td>1000</td>
<td>50651</td>
<td>1.0</td>
<td>188.1</td>
<td>0.8</td>
<td>0.985</td>
<td>3.8</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>UWCC2</td>
<td>1680</td>
<td>3</td>
<td>64</td>
<td>2.18</td>
<td>2.18</td>
<td>N/A</td>
<td>1000</td>
<td>4920</td>
<td>1.0</td>
<td>188.1</td>
<td>0.8</td>
<td>0.949</td>
<td>3.7</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>UWCC3</td>
<td>1680</td>
<td>3</td>
<td>64</td>
<td>2.18</td>
<td>2.18</td>
<td>N/A</td>
<td>1000</td>
<td>5113</td>
<td>1.0</td>
<td>188.1</td>
<td>0.8</td>
<td>1.000</td>
<td>4.2</td>
<td>0.3</td>
<td>-</td>
</tr>
</tbody>
</table>

c Cross-calibrations were performed with the UWCC on a cart and away from adjacent walls to minimize neutron reflections.
Appendix F
UWCC User Procedures

There are two operational modes that use the UWCC:

A. Portable mode, in which the UWCC is shipped to the inspection site and configured, inserted, then removed from the reactor pool after each inspection visit; and

B. Fixed installation in the fuel-storage pool.

The user procedure described below covers operational mode A. Operational mode B is a subset of mode A.

The UWCC is operated using the IAEA neutron coincidence counting software (INCC) program. The electronics to support the UWCC are the same as those used for the HLNC-2 and the AWCC (i.e., a JSR-12 and a PC). Any of the shift-register or multiplicity electronics units may be used with the UWCC. The particular unit used is specified in the INCC setup program. Also, this program contains the setup information for the gate, predelay, HV, deadtime constants, etc. These can be entered into the INCC program or set on the electronics unit, if manual setup is required, prior to the field exercise.

The first step in collecting UWCC verification measurements is to configure the mechanical pieces, connect the wiring to the shift-register electronics, and then to the computer. Following system configuration, electronic tests are performed and the UWCC can be placed into the pool. In the case of fixed installations, the system would be maintained in the pool and all electronic wiring would be in place. Once the UWCC is in the pool, electronics checks and observations are performed so that verification measurements can correctly ensure that the unit is operating properly and hasn’t been damaged.

The UWCC detector head and cables are shipped in a reusable fiberglass case with rolling wheels. The detector pipe sections that clamp together to reach the appropriate depth in the water are shipped in tubes or boxes that are about 2-m long. The detector head contains the dual PDT-210A preamplifier and is pre-assembled and sealed up to the point of the cable disconnect to the extension pipes. The contents in the detector shipping container include:

- the UWCC detector head (configured to the PWR or BWR measurement geometry),
- the protective fabric sleeves for the arms of the fork,
- the approximately 20-m of cable run to reach between the head and the OR (sum) coupling box surface electronics,
● the OR box to combine the two signal lines from the PDT-210A amplifier to feed into the JSR-12,

● the approximately 40-cm cable extension between the OR box and the JSR-12,

● a clamp to attach the UWCC pipes to the side rail or bridge rail, and

● all necessary tools for assembly.

The contents in the electronic shipping container include:

● the JSR-12 electronics,

● shift-register connection cable between the JSR-12 and computer,

● computer containing the INCC software program, and

● power supply and cables for the computer and printers if used.

UWCC ASSEMBLY 1. Open the box containing the detector pipe sections and lay out the necessary lengths of pipe to reach the fuel assemblies.

AND CHECKOUT PROCEDURES 2. Open the fiberglass case that contains the UWCC detector head box and remove the UWCC measurement head, OR (sum) coupling box, signal cables, and fork protective fabric sleeves.

3. Carefully set the UWCC on a foam pad or piece of plastic. Note that the welds on the thin stainless steel (SS) cladding of the UWCC could crack if the UWCC is not handled carefully. If these welds are damaged and/or cracked, the UWCC could leak and the unit would be inoperable.

4. Check the UWCC configuration to ensure that the fork positions and the nylon bumper are set in the correct positions for the type of fresh MOX fuel (PWR or BWR) to be verified.

5. Pull the 20m signal cable bundle through the SS pipe segments and then clamp the pipe segments together to form a 6 to 7m long tube that has the cable bundle threaded inside the tube.

6. Pull about 1m of extra signal cable out of the pipe end and attach the cable connectors to the identified locations at the top of the UWCC (signal A, signal B, +5V, and the HV). Attach the other end of the cable connectors to the identified locations on the OR coupling box.
7. Attach the two fork protective fabric sleeves to the arms of the UWCC.

8. Make sure that the detector head is on a padded surface, to avoid damaging the welds on the SS cladding. Carefully tip the UWCC on its side so that the long SS pipe can be attached to the top flange of the detector head.

9. Have the facility operator attach lifting straps to the detector head and the long pipe so that it can be lifted into the water. Have several inspectors or facility staff help guide the system into the water. Keep the open end of the SS pipe and cable bundle on the side of the pool.

10. Observe that there are no air bubbles coming from the detector head or the pipe joints. Air bubbles would indicate a leak.

11. After the SS pipe is vertical, attach the clamps that will support the UWCC to the side rail or to the bridge crane.

12. Extend the signal cable bundle to the location of the JSR-12 and computer. Attach the cables to the OR box and the OR box to the JSR-12 using the labels on the cables and OR box.

13. Turn on the JSR-12 in the manual mode and repeat step 6; however, in this case the neutron signal will approach zero because of the water shielding around the UWCC.

14. Attach the JSR-12 to the computer using the RS-232 cable.

15. The UWCC is operated with the INCC program. The INCC program should be configured prior to field measurements. If the INCC program has not been configured and set up, refer to Appendix F for detailed procedures on setting INCC measurement parameters, etc.

16. Turn on the computer and the JSR-12 and review the INCC measurement parameter settings under the Setup / Measurement Parameters option. Check that the correct shift-register type is selected (JSR-12 or other shift register if used).
17. Using the Acquire / Rates Only option collect 3 measurements of 10 seconds each to check the operation of the UWCC. Following the measure, select the Reports / Rates Only option and review the output file to check that the predelay, gate length, high voltage, dieaway time, and deadtimes are all correctly set. Review the singles, doubles, and triples counts to check that the UWCC is correctly counting.

18. Check and select the correct facility type, MBA, and detector ID (i.e., UWCC1) under the Setup / Facility / Inspection option.

19. Select or input the isotopes information under the Setup / Isotopes option for the MOX-fuel assemblies to be verified.

20. Set the calibration analysis method for the verification. Under the View option select Maintain. Under the Maintain / Calibration option select “Analysis methods”, then select the “Material type” and “Calibration curve” for the passive-analysis method.

21. Check the passive calibration curve parameters and curve type by selecting Maintain / Calibration / Passive Calibration Curve. The curve type should be of the form “D = a + b * m + c * m^2 + d * m^3.” The UWCC calibration is a linear relationship with a zero intercept between the multiplication corrected doubles (Dmc) and the 240Pu / 239Pu (g/cm) loading of a full MOX fuel assembly. Therefore, the calibration constants a = c = d = 0.0 and only the constant b has a value which is dependent on the type of MOX fuel assembly (PWR or BWR) and the boron content in the pool (0- or 2200 ppm). The calibration constant for PWR MOX fuel, shown in Fig. 20, in a pond containing 2200 ppm boron is b = 25.1 c/s/g/cm

22. Using the Acquire / Background option, collect 10 cycles of 30-sec background counts. The data source for this measurement should be “Shift register.” The UWCC should be under the water in the measurement configuration with no fuel assembly inserted in the unit.

23. Have the operator center a fresh MOX fuel assembly into the UWCC and position it up against the polyethylene bumper.

24. Using the Acquire / Verification option, input the “item id”, “material type”, “declared mass” and then collect 6 cycles of 30-sec verification counts. Note that the “item id” must clearly identify the particular measurement and assembly because it is the key identifier that will be used to reanalyze, report, and review verification measurements. Appendix F provides guidance on defining “item id” names.
25. Keep the MOX fuel assembly in position in the UWCC. The boron concentration in the pool can now be easily confirmed with a second measurement using a gate-width of 128 μs on the MOX assembly that was measured in step 23. Select the Setup / Measurement Parameters option and check that the Gate length (microseconds) was set at 64 for the measurement in step 23. Change the gate length to 128 and repeat the measurement performed in step 10.

26. Determine the doubles gate ratio \((D_{64}/D_{128}) \) by taking the ratio of doubles counts for the 64-us gate measurement \(D_{64} \) to the doubles count for the 128 μs gate measurement, \(D_{128} \). Using this ratio and referring to Fig. 14, confirm the boron concentration in ppm in the pool and check it against the operator information.

27. Select the Setup / Measurement Parameters option, reset the gate length (microseconds) back to 64, and then continue MOX fuel confirmation measurements.

28. Once all verification measurements are complete the UWCC can be decontaminated by the operator, if necessary, and removed from the pond and disassembled and packed for shipment. The decontamination of the equipment would follow the operator's normal procedures; however, the fabric covers for the arms are to be discarded after use.
Appendix G
INCC Setup and Operational Steps for UWCC Measurements

Load the INCC Program.
1. Click on “Start” in lower left corner of screen.
2. Mouse select - Programs / INCC 3.XY / INCC 3.XY
 \[XY = \text{INCC version number} \]

Setup UWCC Measurement Parameters

Set the INCC to allow access to Maintenance mode parameters
1. Mouse select - View / Maintain
2. Check that “Maintain” appears on the bar menu at the top of the screen.

File View Setup Maintain Acquire Reanalyze Report Tools Window Help

Setup Measurement Parameters for Detector UWCC3 (unit 3).
1. Select - Maintain / Detector Add/Delete
2. Select - Add Detector

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift register serial port</td>
<td>COM 1</td>
</tr>
<tr>
<td>Detector id</td>
<td>UWCC3</td>
</tr>
<tr>
<td>Predelay</td>
<td>3.0</td>
</tr>
<tr>
<td>Gate length</td>
<td>64.0</td>
</tr>
<tr>
<td>High voltage</td>
<td>1680</td>
</tr>
<tr>
<td>Die away time</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.0</td>
</tr>
<tr>
<td>Deadtime coefficient A</td>
<td>2.18</td>
</tr>
<tr>
<td>Deadtime coefficient B</td>
<td>2.18</td>
</tr>
<tr>
<td>Deadtime coefficient C</td>
<td>0.0</td>
</tr>
<tr>
<td>Doubles gate fraction</td>
<td>0.7</td>
</tr>
<tr>
<td>Triples gate fraction</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Input facility type and two MBAs for a borated and an unborated fuel pond.
3. Select - Maintain / Facility Add/Delete
4. Select - Add Facility

<table>
<thead>
<tr>
<th>Facility</th>
<th>PWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility description</td>
<td>Reactor</td>
</tr>
</tbody>
</table>

5. Select - Maintain / MBA Add/Delete
6. Select - Add material balance area

| Material balance area | P1 |
| Material balance area description | Pond unborated |

7. Select - Add material balance area

| Material balance area | P2 |
| Material balance area description | Pond with 2200 ppm B |

G-1
Setup two material types for PWR MOX (PMOX) and BWR MOX (BMOX).

8. Select - Maintain / Material Type Add/Delete
9. Select - Add material type
 Material type
 type PMOX
 Select OK

10. Select - Add material type
 Material type
 type BMOX
 Select OK

Select facility and measurement parameters for UWCC verifications at a PWR facility which has fresh MOX fuel in a pond containing 2200 ppm boron.

1. Select - Setup / Facility/Inspection...
 Facility
 Select PWR Reactor
 MBA
 Select P2 Pond with 2200 ppm B
 Detector id
 Select UWCC3
 Select OK

Setup UWCC Calibration parameters to verify PWR MOX fuel in 2200 ppm Boron

1. Select - Maintain / Calibration... / Passive Calibration Curve...
 Material type
 Select PMOX
 Curve type
 Select \(D = a + b \cdot m + c \cdot m^2 + d \cdot m^3 \)
 \(a \)
 type 0.0
 \(b \)
 type 25.1
 \(c \)
 type 0.0
 \(d \)
 type 0.0
 Select OK

Specify analysis methods for the verification measurement of PWR MOX.

2. Select - Maintain / Calibration... / Analysis Methods...
 Material type
 Select PMOX
 Passive Calibration curve
 Select X in box
 Passive Known alpha
 Select X in box
 Select OK

 Normal analysis method
 Select Dot “calibration curve”

 Backup analysis method
 Select X “Known alpha”
 Select OK

3. Select - Maintain / Calibration... / Known Alpha...
 Material type
 Select PMOX

 Alpha weight
 Select type 1.0

 Rho zero
 Select type 0.014

 \(k \)
 check 2.166
 Select OK

Collecting background data prior to verification measurements.

1. Select - Acquire / Background...
 Comment
 type PWR background data
 Count time (secs)
 type 30
 Use number of cycles
 Select Dot
 Number of cycles
 Select 10

G-2
Collecting Verification Data for PWR MOX fuel in 2200 ppm boron.

1. Select - Acquire / Verification...

- MBA: Select P2 Pond with 2200 ppm B
- Material type: Select POX
- Isotopics id: Select ISO1
- Declared mass (g): Select 240Pueff (g/cm) number
- Comment: Select PWR MOX Fuel ID#
- Count time (secs): Select 30
- Use number of cycles: Select Dot in circle
- Number Cycles: Select 6
- QC tests: Select X in box

*refer to the end of this Appendix for suggestions on defining clear id names.

2. Repeat the step above to collect additional verification measurements for different PWR and fuel assemblies. Change the Measurement id and Comment for each new verification.

Suggested Measurement id Names

The INCC program stores measurement files in a database and each file is identified with a measurement id (12 characters) plus the date and time when the measurement occurred or when the data was reanalyzed. It is possible, therefore, to have a number of different measurements or a measurement with a number of reanalyses that all have the same name and the only difference would be in the date and time of each measurement or reanalysis. For this reason, confusion may occur in locating and identifying individual files if care is not taken in developing a unique and clear naming convention for the measurement ids.

One example occurs in reanalysis of measurement data. For example, take the case of measurement id: PWRMOX1 that was collected on date: 98.07.22 and time: 15:45:40 and was then later reanalyzed twice using different deadtimes that were changed using the measurement parameters file for each reanalysis. In this example, there would now be three files called PWRMOX1 in the database and under the INCC program Reanalyze option what would be seen is a listing of three files each with the same name and the only difference would be in the times which would be 15:45:40, 15:45:41, 15:45:42. In this case it is difficult to tell which deadtime was used with which file and what their differences are.

We therefore recommend that a naming convention be established prior to verification measurements to establish unique measurement id names that will allow the measurement data from past inspections to be easily identified and located for post analysis, print out, plotting, etc.
Listed below is a possible naming convention

SxxxFyyyBzzzz

where

S indicates the fuel serial number follows
where xxxx is the fuel serial number

F indicates the type of MOX fuel where F is replaced by P for PWR and by B for BWR
yyy is the declared 240\text{Pu eff} loading in grams per cm
For example, a loading of 14.8 g/cm of 240\text{Pu eff} would be F148

B is the boron loading in the fuel pond
zzzz is the parts per million boron content in the water

<table>
<thead>
<tr>
<th>Zzzz</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>pure water</td>
</tr>
<tr>
<td>0500</td>
<td>500 ppm</td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

Using this convention the measurement id name, P1826F148B2200, would represent a PWR MOX fuel assembly with serial number 1826 containing 14.8 g/cm of ^{240}Pu stored in a pond containing 2200 ppm boron.