Photonic Power Delivery Through Optical Fiber Using Very High Power Laser Diode Arrays

PDF Version Also Available for Download.

Description

Described is a system that will provide isolated electric power for a circuit that drives the core reset of a pulsed power modulator. This can be accomplished by coupling light from a number of diode laser bars to bundles of 200 um multimode optical fibers. This is then coupled to photo-voltaic power converters that will deliver 16 V 29mA of electricity from 1 watt of optical power. Spot size at the bundle face is a Gausian ellipse with a major axis of 1.4 mm radius and a minor axis of four bundles of 12 fibers generating a total of 24 ... continued below

Creation Information

Heino, Matthew & Saethre, Robert May 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Described is a system that will provide isolated electric power for a circuit that drives the core reset of a pulsed power modulator. This can be accomplished by coupling light from a number of diode laser bars to bundles of 200 um multimode optical fibers. This is then coupled to photo-voltaic power converters that will deliver 16 V 29mA of electricity from 1 watt of optical power. Spot size at the bundle face is a Gausian ellipse with a major axis of 1.4 mm radius and a minor axis of four bundles of 12 fibers generating a total of 24 W of electrical power. Various schemes are used to maximize coupling into the optical filber while limiting the number of optical components, and comparing components such as fresnel and aspheric lenses and lens ducts for effectiveness and cost. This will provide a completely isolated low power source for high voltage, high current environments where tradional isolation techniques yield inadequate isolation or prove too cumbersome.

Source

  • Photonics West. San Jose, California, January 25, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00006722
  • Report No.: DOE/NV/11718--281
  • Grant Number: AC08-96NV11718
  • Office of Scientific & Technical Information Report Number: 6722
  • Archival Resource Key: ark:/67531/metadc710689

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 6, 2016, 11:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Heino, Matthew & Saethre, Robert. Photonic Power Delivery Through Optical Fiber Using Very High Power Laser Diode Arrays, article, May 1, 1999; United States. (digital.library.unt.edu/ark:/67531/metadc710689/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.