Shrinkage and recyclability of poly(1,2-ethylene-bis(dimethylsiloxane))
PDF Version Also Available for Download.
Description
Non-shrinking polymers are desirable as encapsulants for strain-free packaging for electronics. Ring-opening polymerizations of cyclic monomers such as lactams, cyclic ethers, and cyclic oligosiloxanes have proven an effective strategy for reducing shrinkage. In this report the authors examined the loss of volume during the ring-opening polymerization of neat 2,2,5,5-tetramethyl-l-oxa-2,5-disilacyclopentane to give poly(1,2-ethylene-bis(dimethyl-siloxane)). Monomer 1 is under sufficient strain (8--12 kcal/mole) to permit its facile base-catalyzed polymerization to afford high molecular polymer. Monomer 1 was prepared by hydrolyzing and condensing either 1,2-bis(chlorodimethylsilyl)ethane or 1,m2-bis(dimethylethoxysilyl)ethane to give a low molecular weight oligomer. Pyrolysis of this oligomer with potassium hydroxide at 280 C …
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
Non-shrinking polymers are desirable as encapsulants for strain-free packaging for electronics. Ring-opening polymerizations of cyclic monomers such as lactams, cyclic ethers, and cyclic oligosiloxanes have proven an effective strategy for reducing shrinkage. In this report the authors examined the loss of volume during the ring-opening polymerization of neat 2,2,5,5-tetramethyl-l-oxa-2,5-disilacyclopentane to give poly(1,2-ethylene-bis(dimethyl-siloxane)). Monomer 1 is under sufficient strain (8--12 kcal/mole) to permit its facile base-catalyzed polymerization to afford high molecular polymer. Monomer 1 was prepared by hydrolyzing and condensing either 1,2-bis(chlorodimethylsilyl)ethane or 1,m2-bis(dimethylethoxysilyl)ethane to give a low molecular weight oligomer. Pyrolysis of this oligomer with potassium hydroxide at 280 C afforded the cyclic monomer in good yield (60--70%). The ease with which the oligomer can be converted to monomer also led the authors to investigate the potential for recycling the high molecular weight polymer.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Samara, M. & Loy, D.A.Shrinkage and recyclability of poly(1,2-ethylene-bis(dimethylsiloxane)),
report,
August 1, 1998;
United States.
(https://digital.library.unt.edu/ark:/67531/metadc710677/:
accessed June 9, 2023),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.