Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier layer junctions

PDF Version Also Available for Download.

Description

The electric transport of high-temperature superconductors, such as YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T{sub c} materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also ... continued below

Physical Description

3 p.

Creation Information

Merkle, K.L. & Huang, Y. January 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The electric transport of high-temperature superconductors, such as YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T{sub c} materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also be formed by introducing artificial barriers into the superconductor. The authors have examined both types of Josephson junctions by EM techniques in an effort to understand the connection between microstructure/chemistry and electrical transport properties. This knowledge is a valuable resource for the design and production of improved devices.

Physical Description

3 p.

Notes

INIS; OSTI as DE98057806

Source

  • Microscopy and microanalysis 1998, Atlanta, GA (United States), 12-16 Jul 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98057806
  • Report No.: ANL/MSD/CP--95690
  • Report No.: CONF-980713--
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 674970
  • Archival Resource Key: ark:/67531/metadc710554

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 5, 2015, 12:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Merkle, K.L. & Huang, Y. Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier layer junctions, article, January 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc710554/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.