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Abstract 

The telecommunications sector plays a pivotal role in the system of increasingly connected and 
interdependent networks that make up national infrastructure. An assessment of the probable structure and 
function of the "bit-moving" industry in the twenty-first century must include issues associated with the 
surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior 
of a system in both intended and unintended circumstances. This paper outlines various engineering 
approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It 
uses the experience and expectations of the telecommunications system of the United States as an example 
of the global challenges. 

The paper examines the principal factors underlying the change to more distributed systems in this 
sector, assesses surety issues associated with these changes, and suggests several possible strategies for 
mitigation. It also studies the ramifications of what could happen if this sector became a target for those 
seeking to compromise a nation's security and economic well being. Experts in this area generally agree 
that the U. S. telecommunications sector will eventually respond in a way that meets market demands for 
surety. Questions remain open, however, about confidence in the telecommunications sector and the 
nation's infrastructure during "unintended" circumstances — such as those posed by information warfare or 
by cascading software failures. Resolution of these questions is complicated by the lack of clear 
accountability of the private and the public sectors for the surety of telecommunications. 
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INTRODUCTION TO THE CONCEPT OF CRITICAL INFRASTRUCTURE 

The World Trade Organization recently released a report on the future of the Internet and 
electronic commerce. It states that there are many technical and legal challenges ahead, which we believe 
apply to telecommunications in general: "securing adequate telecom infrastructure; providing legal and 
jurisdictional safety; ensuring security and privacy of information; designing tax regimes; and 'fostering 
equal opportunity through appropriate policies to promote education and access, particularly in developing 
countries.'"[Giu] Although not offering solutions, the report identifies two broad considerations that must 
be addressed in meeting these challenges: governments should not regulate the Internet individually, that 
any such regulation should be multilateral; and, the issue of equity in electronic commerce among 
developed and developing countries must be addressed. We assert a third broad consideration: the 
telecommunication system must be sure. Surety of the system encompasses more than the security and 
privacy issues cited above. System surety is the theme of this paper. Before proceeding to a discussion of 
issues surrounding telecommunications surety in the new paradigm, we first must present the concept of 
critical infrastructures and then a general description of surety and the Sandia approach to surety. 

The United States relies increasingly upon an infrastructure composed of a complex framework of 
interdependent networks and systems that provides a continual flow of goods and services essential to the 
defense and economic security of the United States. Telecommunications is one of these elements; in fact, 
according to Richard Kuhn of NIST, 'The telephone system of the United States is possibly the largest 
distributed system in existence."[Kuh] Other elements include transportation, electric power, oil and gas 
distribution, finance and banking, and vital human services. This highly interdependent system of systems is 
owned and serviced primarily by private industry, but is also an essential element in governmental 
operations. Our mounting dependence on the infrastructure is, unfortunately, accompanied by increasing 
vulnerability to failures and disruptions from malicious intrusion, inadvertent error, aging and degradation, 
natural disasters and, more and more, by the complexity of the system itself as the number of 
interconnections within and among the infrastructure elements increases. We must address the surety 
(safety, security, and reliability) of the telecommunications infrastructure and those elements of the global 
infrastructure that affect national security. 

Many elements of critical infrastructures are vulnerable to both physical and cyber threats. Some 
cyber threats can be mounted at very little cost to an adversary and are hard to detect and trace. In the 
banking and finance community, for example, consequences of a successful cyber attack could be 
staggering. Trillions of dollars in funds and securities are transferred daily by electronic communications 
mechanisms. The high value and volume of such transactions within an open environment exposes the 
business community and its customers to severe potential consequences from accidental or deliberate 
alteration, substitution, or destruction of data. This potential is compounded by interconnected networks 
and by the increased numberand sophistication of malicious adversaries (see, for example, [Ric] and [Fis]). 

The interconnection between elements of the infrastructure increases its vulnerability on a national 
level. If designed and implemented properly, the interconnection could reduce the number and severity of 
failures; however, without adequate forethought, the coupling may cascade failures within and across 
diverse elements of the infrastructure. As the infrastructure systems of telecommunications, electric 
transmission, and gas transmission change topology and technology in the face of deregulation, the system 
could evolve so that it is more vulnerable to intentional or unintentional disruption. 

Even though terrorist attacks on pieces of the critical infrastructure are not as common in the U.S. 
as they are in Europe and Latin America [OTA ], recent events within the US such as the Oklahoma City 
and New York Trade Center bombings illustrate that these statistics may change. Publicly available 
documentation contains sufficient information to identify potential power grid targets that could result in 
major, long-term blackouts. 

Historically, private industry has not addressed certain low probability of occurence but 
nevertheless high-consequence events because of the high potential cost of protective measures and the lack 
of a corresponding clearly defined benefit from those measures. However, as interdependency between 
infrastructure elements continues to build, particularly between the banking/finance, telecommunications 
and electric power industries, some additional steps may have to be taken to understand and predict how 
national security and the economy might be affected by potential cascading impacts. 



Introduction to the Concept of Surety 
The term "surety" may be unfamiliar to the reader. "Surety" was first used in a military context and 

included readiness, reliability, and other similar issues. The term was adopted by the United States Atomic 
Energy Commission (now the Department of Energy) and then its laboratories, including Sandia National 
Laboratories. Surety is an attribute of a system, one of the most important attributes. We define surety as the 
confidence that a system will perform in acceptable ways in both intended and unintended circumstances. The 
latter include abnormal (accident) and malevolent (intelligent attack) situations. Elements of surety include 
reliable performance, safety, and security. Within the security element are three sub-elements: protection 
against unauthorized access, protection against unauthorized use, and permission for authorized access and use. 
The three high-level elements of reliable performance, safety, and security are not orthogonal. In fact, they are 
closely associated; unreliability can make a system less safe and too many safety and/or security features can 
make a system less reliable or less safe. 

A sure system, then, is a system in which, and through which, significant events occur if, and only if, 
the designer and authorized operator intend them to occur. 

Approaches to System Surety 
Two primary theories have been proposed for achieving surety in high-consequence systems: a 

theory based on high-reliability and one based on normal accidents. For example, John von Neumann asked 
whether it is possible to build reliable systems from unreliable parts. For high-reliability theorists, the 
answer is "yes," and this is achieved in part through appropriate system design and operations. Some high-
reliability theorists advocate, anticipation and resilience-- the former is to design a system that prevents 
undesired events from occurring and the latter is to design a system that mitigates the effects of the 
undesired event once it has occurred. Scott Sagan, a Stanford University political scientist with expertise 
in organization theory, writes that high reliability theorists contend prevention and mitigation are enhanced 
by the application of redundancy, and that in addition, they "...believe that hazardous technologies can be 
safely controlled by complex organizations if wise design and management techniques are followed." [Sag] 
On the other hand, Diane Vaughan's recent study of the Challenger accident found that following 
established procedures in a system with many engineered redundancies is insufficient to assure surety if 
organizational structure and processes are flawed. [Vau] Management structures and processes can have as 
many complexities and couplings as any hardware or software system. 

In contrasting the two theories Sagan writes, "[Normal accident] theory predicts that serious 
accidents are inevitable if the organizations that control hazardous technologies display both high 
interactive complexity (which produces bizarre and unanticipated failures) and tight coupling (which causes 
the failures to escalate rapidly out of control)."[Sag] 

Charles Perrow coined the term "normal accident." He writes that "Most high-risk systems have 
some special characteristics,, beyond their toxic or explosive or genetic dangers, that make accidents in them 
inevitable, even 'normal.' This has to do with the way failures can interact and the way the system is tied 
together....The odd term normal accident is meant to signal that, given the system characteristics, multiple 
and unexpected interactions of failures are inevitable. This is an expression of an integral characteristic of 
the system, not a statement of frequency." [Per, emphasis in the original] 

Several systems-engineering approaches exist to achieve a sure system. They are not mutually 
exclusive, although proponents of the two prevalent academic theories would likely disagree. In the design and 
operation phase, the approaches can complement each other. The approaches involve risk management, formal 
management of large, integrated, complex systems, and reliance on first principles to achieve a sure system. 
Another and more usual approach is a hybrid of the other approaches, taking certain elements of each and 
combining them. In any design for surety, organizational factors must be evaluated in terms of how they affect 
surety of the system. We discuss the merits of these several approaches below. 

Risk management for high-consequence technologies may well have been born with the seminal paper 
written in 1969 by Chauncey Starr, now president-emeritus of the Electric Power Research Institute [Sta, 
1969]. He posited then that the performance criteria for a mature technological system is a balanced trade
off of societal benefits and societal costs, indirect as well as direct. He more recently returned to these 
issues: "In a world in which zero risk is impossible, and safety has no absolute measure, the question then 
arises as to how to determine 'how safe is safe enough."[Sta, 1991] (In keeping with the three elements of 
system surety, we could alspiask, "How reliable is reliable enough?" and "How secure is secure enough?") 



Risk management explicitly recognizes that off-normal situations will arise and seeks to manage the risks 
associated with those situations. It is risk management, not risk elimination. 

Risk management starts with an objective assessment of the risks and benefits of technologies and 
their applications. Examples of risk assessments abound; for example, see [USN]. The aim of risk 
management is to provide a rational basis for decision making, and such analyses should include 
uncertainties. Risk management techniques have also been applied to the analysis of the regulation of risk 
[Har]. 

The use of formal methods in system design. The literature on systems engineering is almost unanimous in 
recognizing the existence of major difficulties in the specification and design of large, integrated, complex 
systems. Always a problem, this is becoming increasingly acute with the use of microprocessors that are 
evolving to ever-smaller sizes with ever more possible components and interconnections. Simply 
developing and maintaining an accurate characterization of a large carrier network is a major challenge. 
Verifying and validating the integrity of the states that can occur for all network elements and services 
across carriers would be a daunting task, as it also is to verify and validate the integrity of the states that 
occur in the evolving telecommunications network. After all, as mentioned above, the telephone system of 
the U.S. is huge and is becoming both larger and more complex on almost a daily basis. 

A recent paper concerning formal methods notes, "A [specific] problem encountered when 
designing high-consequence, high-assurance systems involves using unclear, informal, and non-rigorous 
techniques to design and analyze the system. This problem manifests itself in the systems-level design 
when describing reactive behaviors." [Dav] (Reactive systems continuously react to both external and 
internal stimuli.) 

More formal methods do exist. "Robust product design" is one that uses quality approaches to 
optimize design performance [Fow]. Another, championed at Vanderbilt University, involves paradigm-
concept development. It borrows aspects from analytical and model generation concepts developed in 
computer science, in particular object-oriented analysis and finite-state machines. Risk assessment analysis 
techniques such as fault tree analysis or failure modes and effects analysis have proven problemmatic for 
examining systems with complex timing dependencies. The newer computer science-based approaches 
should better address this limitation. 

First Principle Approach. Instead of attempting to assess and manage risks or create intricate state 
machines, the system designer can rely on first principles to achieve a sure system. For example, newer 
nuclear reactor designs rely an physics to provide inherent safety; in some such designs, water cools the 
reactor core in an emergency by being fed by gravity from a tank through a pipe with a fusible drop-out 
plate in it which melts at accident temperatures. 

We at Sandia use first principles in nuclear weapon safety so that we do not need to analyze every 
possible perturbation of accident environment using risk assessment - or other techniques. Instead a safety 
theme for a weapon is developed, generally using the "three 7's." [D'An, Plu] Isolation of critical components 
from their surroundings; assuring that a firing signal is incompatible with any other that could be generated in 
either normal or abnormal environments; and inoperability of the system if certain abnormal circumstances 
occur. It can be shown mathematically that, in theory, this first principle design approach is perfect [Kun]; 
engineering implementation, however, may be less so. Proper design, manufacture, and assembly can create a 
predictably safe high consequence system. 

The design theme,of the three 7's was specifically created for the safety element of a system. 
Isolation, Inoperability, and Incompatibility can also be extended into the security element, but security 
themes are less well articulated. Recently, some at Sandia have labeled this the three D's for security: 
delay, disable, and discriminate [Tal]. Others keep the three 7's but define them somewhat differently for 
security than for safety [D'An]. The concept of delay for an intelligent attack against a system is to make 
penetrating the system difficult, if not impossible. Included is the concept of detection, that the authorized 
operators of the system know they are being attacked. In addition, one time boundary of delay is eternity, 
that is, a limiting situation is defeat of the attack and the system is not penetrated. 

Even if the designers and authorized operators believe that the system will defeat all attackers, if 
the failure of the system would cause high consequences, it would still be prudent to design and operate the 
system with the second D in mind. If the system is penetrated, the attacker becomes the unauthorized user 
who will disrupt the normal .operation of the system by either ceasing its normal operation or causing the 



system to perform operations that are not authorized. Designing elements of the system to disable itself if 
operator authentication is lacking is the second D. 

For a telecommunications network, temporary, localized disablement is the preferred feature rather 
than a more severe disruption of the system. Care must be made in designing the reversibility, so the 
attacker does not automatically gain access to it when he penetrates the system. 

Lastly, the system must be able to discriminate between an authentic message and a non-authentic 
one. Cryptographic methods can be used. Also included in this third D is the concept of thwarting an 
attack whose purpose is to deny authorized use. 

Hybrid approaches are more common in system design. Rarely does the system designer or analyst use just one 
approach to achieve or assess system surety. It is certainly prudent to use nature to achieve surety as much as 
possible, but engineering designs are not theories, and implementation of a design occurs in an imperfect human 
world. Hence, hybrid approaches are generally used. It is also prudent to simplify and decouple the system as 
much as possible so that fault propagation is limited and mitigation strategies can be used. More complex is not 
necessarily better, nor is more tightly coupled necessarily more effective when all aspects of surety are 
considered. 

How organizational factors affect surety must also be considered. [PatC, Kai, Sag, Vau, Zebl989, 
Zebl991] Not just hardware and software are important, but also the structure of and communication 
within the organization designing and operating the system. "Accidental experiments"1 of the last two 
decades include Three Mile Island, Bhopal, Challenger, Chernobyl, Piper Alpha, and airline crashes such as 
that of American Airlines atCali, Columbia. Some findings to date, with 20-20 hindsight, are that all 
involved human error, questionable operations, design flaws, and most involved problems at interfaces. 
But, to a large extent, these do not seem to be the root causes. Rather the root causes were the systems 
themselves, which were complex and tightly coupled, often with unforeseen interactions, in spite of much 
testing and analysis. The systems were unforgiving, and, in general, the organizations did not approach 
them with a broad examination of all possible system states and often kept responsibilities 
compartmentalized at too high a level. In addition, in some cases, the accident that happened could not 
have happened according to the understanding of the designers and the predictions of their models. In a 
majority of cases, the accidents against which the design was analyzed were not among the type of accidents 
that were actually experienced. 

The lessons are: (1) to think broadly for the definition of the system to include operations, normal 
and off-normal, and operators, humans and procedures, as well as hardware and software; (2) to avoid 
compartmentalizing aspects of the system at too high a level; (3) to have someone assessing, continually, 
the entire system; and (4) to make the system fault-tolerant to the real threats it may encounter. In a highly 
competitive marketplace with a large number of new entrants, we would expect an intensification of 
compartmentalization to occur at the level of individual carrier networks. The informal cooperation that 
may have developed among, a few large carriers to manage widespread failure events will be challenged in 
the future. Cost pressures and the lack of trained staff may make the dedication of resources to simply 
monitor the network too expensive for many new entrants, and perhaps even for more established providers. 

TELECOMMUNICATIONS 

Description 
We include in the definition of telecommunications not only telephony but also a wide variety of 

communications media and.devices. For the U. S., the Communications Act of 1934, as amended by 
Congress in 1996 provides'the following definition: 

The term "telecommunications" means the transmission, between or among points 
specified by the user, of information of the user's choosing, without change in the form or 
content of the information as sent and received. [Act] 

1 This phrase was coined by Henry Petroski of Duke University. [Wal] 



A key phrase in this definition is "information of the user's choosing". This encompasses the wide 
spectrum of information types and media types that current technology allows and which technology is 
envisioned to accommodate. Telephones are now used for both voice and data communications, data that 
may be facsimile information, digital data that uses a telephone connected to a computer or computer 
network, and others. Cellular, satellite, and other wireless telephone systems are now being widely used as 
well and allow communications to take place from varying locations or from remote areas. This definition 
does not restrict telecommunication to current technology. It is technology independent allowing for newer 
technologies as they are discovered and developed. The impacts of the fact that technology has advanced to 
provide new operational concepts and new ways to deliver information are only now beginning to be 
realized. For example, the advent of on-demand-information content opens up new service possibilities. 

With the advent of the "digital age", information to be transmitted may be of a variety of types: 
audio, video, facsimile, textual, and the many other forms in which information can be communicated. 
Each of these media types use the same underlying telecommunications infrastructure with each type being 
converted into digital bits, transmitted among points regardless of their content, and when received are 
presented in the intended form. The intended form is no longer limited to the form in which the information 
was created. Content can be presented in different ways determined by either the sender or the receiver of 
the information. 

The telecommunication infrastructure necessary to support the transmission of this wide variety of 
information consists of a vast network of heterogeneous equipment and their integrated software systems 
with each element of this infrastructure contributing to the provision of the collection of telecommunication 
services. The complexity of this system defies its comprehension by any individual. One author states that 
"[a] highly intercommunicating decentralized structure shows far more resilience and likelihood of survival. 
It is certainly more sustainable and likely to evolve over time."[Neg] Information within this system is 
transmitted over millions of miles of copper, coaxial and fiber cables, and includes satellite and ground 
based wireless facilities as.^ell. The switching of information among points specified by the user is a key 
element of the infrastructure,and is typically accomplished with automated, computer-controlled switching 
equipment. The systems within the telecommunication infrastructure provide for management of the 
infrastructure as well as its administration and operation. In essence, the telecommunications infrastructure 
moves bits around the world for the benefit of and at the request of the users. 

The Act also states that the Federal Communications Commission shall be constituted for the 
purpose of regulating communication commerce to provide: 

a rapid, efficient, Nation-wide, and world-wide wire and radio communication service with 
adequate facilities at reasonable charges, for the purpose of the national defense, for the 
purpose of promoting safety of life and property through the use of wire and radio 
communication [Act] 

Policy and Business Drivers to a More Distributed Future 
Changes in technology and the implied economic benefits of a more competitive industry have 

been the fundamental drivers behind deregulation of the telecommunication industry. From a historical 
perspective, the telecommunications industry, initially the telegraph and later the telephone, were regulated 
because it fit the classic definition of a natural monopoly. Allowing competing services would have led to 
duplication of infrastructure in the form of duplicated telephone lines and switching equipment. 

Over time, technological change and the potential for large consumer benefits eroded the logic 
behind maintaining natural monopolies and led to changes in the existing regulations. For example, in 
1963, Microwave Communications Inc. (MCI) filed applications with the FCC to construct and operate 
microwave service from St. Louis to Chicago, thereby bypassing the existing common carrier. These 
carriers opposed the proposal on the grounds that it would result in duplicative, and hence inefficient, 
services and that MCI was financially and technically unqualified to operate such a system. [Phi, p. 766] 
The FCC voted to grant the permit, ultimately noting that".. .it would be inconsistent with the public 
interest to deny MCFs applications." [Phi, p. 766] Within 12 months of this ruling, 37 additional 
applications were filed, proposing the construction of some 1713 microwave stations. By 1971, the FCC 
had officially announced a policy of free access by new specialized carriers that could meet financial and 
technical standards.fPhi, p. 766] 



As technology continued evolving, additional challenges to the traditional role of the common 
carriers arose. And over time, the common carriers had greater and greater difficulty convincing the FCC 
that justification remained for protecting them from competition. Kestenbaum concludes that by 1971 the 
FCC had adopted a legal-economic judgment that".. .reliance on regulation [should be] a last resort, 
justified only when competition is not feasible or practical."[Phi, p. 772] 

While the changing technology made it possible for new companies to challenge the common 
carriers, the FCC allowed increased competition because of the potential for large economic benefits to 
consumers. A study by the Crandall and Ellig [Cra] of the economic benefits of deregulation in several 
industries supports the view that deregulation benefits the consumer in terms of lower relative prices. 
Crandall and Ellig estimated that deregulation led to real price reductions after ten years of 27-57% in the 
gas industry, 40-47% in the long distance telecommunication industry, 29% in the airline industry, 28-56% 
in the trucking industry, and 44% in the railroad industry.[Cra, p. 2] 

By the time that the Telecommunications Act of 1996 became law, technology had further blurred 
the artificial distinctions between various telecommunication providers. Specifically, as the use of digital 
technologies replaced analog technologies, the distinction between cable, computer, utility, and telephone 
companies as potential telecommunication providers became less clear. Telephone companies could deliver 
movies, radio broadcasts, or newspapers on demand via its lines directly to the user's TV or computer when 
they want them, rather than at preset times. Utilities could electronically read meters and control the flow of 
electricity to houses based on time-of-day pricing. 

These distinctions between telecommunication providers will continue to evolve in the future. 
Traditionally, one of the FCC's roles has been to allocate the spectrum, so that radio, wireless telephone, 
and television signals are broadcast in such a way as to not interfere or overlap with each other. However, 
as digital technologies have evolved, the distinction has blurred. Consumers can benefit in choosing how to 
use these digital flows. Negroponte [Neg] uses the example of forecasting weather. Under the old formula, 
a television station might use its share of the spectrum to broadcast a weather report to your television. 
Technology now allows the broadcaster to transmit the weather in bit form to your home personal 
computer/TV that then, based on your preferences, displays the weather in traditional form, or as a printed 
map, or as an individual newspaper update, or as a voice report. "The broadcaster does not even know what 
the bits will turn into: video, audio, or print. You decide that."[Neg, p. 55] This example illustrates that 
the technology will continue pushing the regulation over time; the current regulatory system, even after the 
Telecommunications Act of 1996, is still not able to deal with the digital future. As technology and 
applications advance, the regulatory structure will have to continually change to catch up; but, however it 
changes, the structure must respond quickly. A recent editorial in The Economist stated "There are clear 
lessons from [British Telecom's recent] experience for both regulators and other embattled incumbents. For 
regulators, it is that shock treatment is best. Get out as soon as telecoms can be treated like a normal 
competitive market—the technology will make it happen sooner than you dared hope."[Eco] 

Technology and economics are the ultimate drivers behind telecommunication restructuring. 
Restructuring has led to a more decentralized, distributed, and less well-defined telecommunications 
industry. The FCC's role and responsibilities will continue to change as the definition of the "public 
interest" changes. Future roles for the FCC include enabling competition, maintaining overall system 
integrity and reliability, and settling disputes among various competitors. Its job will be less and less to 
determine how the broadcast spectrum is used (since technology advances should continue to relieve 
bandwidth limitations) and more on how to establish standards for competition. The future, though, will 
probably not be totally deregulated; regulation to some degree will still be necessary. As Cairncross has 
observed, 'This business rewards size. The more people and businesses a network connects, the greater the 
value of being plugged into it. Without regulation to sustain competition, the telephone network might 
naturally revert to a single giant. Even if services remained competitive, the network probably would 
not...So regulation is probably inevitable to ensure competition."[Cai] 

Other Public Impacts of a More Distributed Future 

The external public impacts are many, and most concern cultural changes, which we are not 
qualified to address. We do not know the unintended cultural consequences of the telecommunications 
revolution. Arthur Schlesinger, writing in Foreign Affairs, considered the effect of telecommunications 
interconnectivity and rapidity on the body politic. "...[T]he interactivity introduced by the Computer 



Revolution makes "pure democracy" technically feasible on a national scale....The rise of public opinion 
polls, focus groups and referendums suggests popular demand for a finished democracy. With a nation of 
computers plugged into information and communication networks, "full democracy" is just around the 
corner....[I]s this a desirable prospect?" [Schl] He argues that it is not, that "interactivity encourages instant 
responses, discourages second thoughts, and offers outlets for demagoguery, egomania, insult, and hate." 

Our intent is not to debate the political and cultural ramifications of telecommunicative citizenry except 
from one specific viewpoint. If such voting occurred, would the integrity of the result be unquestioned? How 
would the sanctity of an individual's ballot be assured? If telecommunicative citizenry happens, loss of 
confidence in the process might have a devastating effect on the body politic with even a greater decline in the 
public's respect for institutions. Sure telecommunications for this application are a must. 

Faster telecommunications and larger, more accessible databases can also challenge the privacy of 
individuals. This has always been a concern whenever databases have been kept, but the future of 
telecommunications increases the concern by a significant degree. Already today we see information "brokers" 
on the Worldwide Web offering to access salary information on an individual for $75, telephone records for 
$80-200, and ten year medical histories for $400 per person [Ber]. Either the public will come to accept this 
loss of privacy or it will rebel against such an invasion. Privacy standards and regulation, whether by the 
business community or governments, may be preferable. 

THREATS TO THE SURETY OF TELECOMMUNICATIONS 

One way to look at threats for telecommunications in the future is to separate internal from external 
threats: internal threats are based on the technologies used and the organizational structures using them, and 
external threats are from outside individuals or groups intent on harm. We briefly explore them in this 
section with the emphasis on those threats external to the system. Threats due to external but natural 
phenomena (e.g., weather) should be noted but are not further discussed. Threats posed by malevolent 
insiders are also discussed below. 

Internal System Threats 
Without proper attention, surety may become more and more difficult to achieve, as the pace of 

innovation in telecommunication increases from its own recent, fast acceleration. This is the internal 
technological threat. An article in the London Times last autumn discussed this issue: 

Unfortunately technological churning also prevents improvements in reliability and 
quality. Would you.feel safe in an aircraft if you knew that Rolls-Royce and Pratt and 
Whitney were reinventing the jet engine every six months? 

Technological churning also prevents the establishment of common standards that would 
make equipment compatible. [Kal] 

In the old telecommunications world, the public took reliability, quality, and compatibility for granted. The 
challenge for the future is to assure continuity in surety, so that the changes wrought by technology are as 
seamless as possible. For example, the numbers needed to ring, dial, or punch a particular person's telephone 
may change in their digits, but conversation will still occur reliably and with high quality, whether analog or 
digital, and any other bits transferred through the connection will not be routed wrongly nor not at all. In 
addition, we do not want any fault, when one occurs, to propagate throughout the system, bringing it all, or a 
substantial part of it, to a halt. As Birman writes, "Why do distributed systems crash? If we exclude systems 
that fail because they were mismanaged or poorly designed, the most common scenario involves an isolated 
problem at one site that triggers a chain of events in which program after program throughout the network 
eventually shuts down."[Bir] Some believe that the 1990 nation-wide AT&T failure was due to the complexity 
of the network and its potential for cascading failures.[Kuh] Will the new deregulated telecommunications 
system be more or less susceptible to such failures? In a later section, we present some ideas on how to 
approach designing a system so that it will be less susceptible. 



External System Threats 
A second class of challenges to the future telecommunications world is posed externally, by persons 

intent on harm, and arises because of changes to society at large. We introduce the changing external threat 
picture in this section and, further below, discuss what that threat can do to the telecommunication infrastructure 
in a section entitled "Information Warfare." The external threat can be posed by any number of people- hacker, 
terrorist, rogue business, rogue country, or organized crime. The intentions of all, though, are surreptitious 
information gathering, data manipulation, or system malfunction. Walter Laquer, of the Center for Strategic and 
International Studies, has written 

Society has also become vulnerable to a new kind of terrorism in which the destructive 
power of both the individual terrorist and terrorism as a tactic are infinitely greater. 
Earlier terrorists could kill kings or high officials, but others only too eager to inherit their 
mantle quickly stepped in. The advanced societies of today are more dependent every 
day on the electronic storage, retrieval, analysis, and transmission of information. 
Defense, the police, banking, trade, transportation, scientific work, and a large percentage 
of the government's and the private sector's transactions are on-line. That exposes 
enormous vital areas of national life to mischief or sabotage by any computer hacker, and 
concerted sabotage could render a country unable to function. 

An unnamed U.S. intelligence official has boasted that with $1 billion and 20 capable 
hackers, he could shut down America. What he could achieve, a terrorist could too. 
There is little secrecy in the wired society, and protective measures have proved of 
limited value: teenage hackers have penetrated highly secret systems in every field. The 
possibilities for creating chaos are almost unlimited even now, and vulnerability will 
almost certainly increase. Terrorists' targets will change: Why assassinate a politician or 
indiscriminately kill people when an attack on electronic switching will produce far more 
dramatic and lasting results?...If the new terrorism directs its energies toward information 
warfare, its destructive power will be exponentially greater than it wielded in the past— 
greater even than it would be with biological and chemical weapons.[Laq] 

Although some of the statements in this example are not strictly accurate, the general notions 
underlying the conclusions are worth considering — New telecommunications technology makes it easier for 
the terrorist to communicate demands to the public since they cannot be as easily isolated from the media. 
But ironically, the same technology enables the terrorist to have relatively secure communications with their 
fellows and to perform telecommunications attack from afar. 

As another recent article noted, "The future economic terrorist could attack U.S. corporations 
through their dependence on information. Their use of Trojan horses, viruses, and spoofing could render 
information systems inoperative. Proprietary concepts and designs could be stolen, test results altered, 
research and development derailed, damaging data exposed, or personnel records modified."[Med] There 
is also no editor on the Internet. An attack could simply be the spread of malicious gossip about an 
individual. 

For all the fears of a terrorist assault on telecommunications, however, some fear assaults by others 
more. Laquer writes, "...the .vulnerability of states and societies will be of less interest to terrorists than to 
ordinary criminals and organized crime, disgruntled employees of big corporations, and of course, spies and 
hostile governments." [Laq] Furthermore, Medd and Goldstein note that the states that the U.S. labeled as 
sponsors of terrorism in 1994 (Iran, Libya, Cuba, Syria, North Korea, Iraq, and Sudan) had a combined 
GNP less than one-fourth that of organized crime! [Med] 

How likely are external threats? They are occurring now. Among other examples, the Cali drug 
cartel has engaged in electronic terrorism against the Colombian government [Med] and drug gangs in 
Amsterdam have as well against the Dutch police [Ratb]. In more direct extortion, since 1993, City of 
London and New York financial institutions have been attacked forty times by cyber criminals who were 
able to extort $600 million [Rat a]. The accuracy of these reports is perhaps not as important an issue as the 
credibility of the threat. 

As to terrorism, its frequency fluctuates with the regional and global political climate. The annual 
number of terrorist incidents against the U.S. has generally decreased over the past three decades (since the 



State Department and F.B.I, began keeping such statistics) but the severity of the average incident per year 
(measured by average number of casualties per incident) has increased. Since the early 1980s, businesses 
have been the predominant target for terrorism when U.S. public or private assets are the targets, and this 
trend is growing. Medd and Goldstein noted that by 1994, "...business targets dominate the statistics by 
nearly a factor of two over the next closest U.S. target type.. ."[Med]. Furthermore, they argue that 
organized crime connections with terrorists will increase and that economic motives will continue to be 
most important. In the 1960s and 1970s, the motive for terrorism was mainly political; in the 1980s, it was 
religious. Now and in the future, the motive is often, and will likely often be, economic. 

A political solution may become much more difficult. Deterrence against, and boycotts of, 
countries that sponsor terrorism may become less effective than now because that sponsorship is also 
changing. The financial backing for many terrorists comes not from a state but from wealthy individuals. 
[Ger, Mac] 

ISSUES OF A MORE DISTRIBUTED FUTURE 

This section briefly reviews the pre-competitive telecommunications infrastructure. The next 
subsection then discusses the changes brought on by competition. In general, today's infrastructure is more 
robust, and service offerings are more diverse. Competition does present new challenges to surety. Surety 
may be critical in the future in an environment of more distributed technology and more sophisticated 
threats. 

The Pre-Competitiye Infrastructure 
The pre-1984 telecommunications infrastructure consisted primarily of large regulated monopolies, 

such as AT&T and the Bell System in the United States and governmental entities (so-called PTTs) in 
Europe and Japan. Although those networks were quite large, they had fairly simple service requirements 
by today's standards. First, they were optimized for one service - 4 KHz voice. Other services, such as 
television, data and fax, either used separate networks, such as cable television, or operated within that 4 
KHz constraint, like the FAX. Second, cellular telephones were not yet widely used. Thus, customers had 
fixed locations that used well-characterized wired media. That basic service mix greatly simplified traffic 
engineering. 

As noted above, the number of service providers, the common carriers, was limited, further 
simplifying the system. In addition, those providers usually bought proprietary hardware and software 
systems from a limited, and often vertically integrated, vendor base. In the United States, an example was 
Western Electric, the captive supplier of the Bell System.. So, although the equipment was nominally 
standards-based, those standards were often just pro forma publication of the existing, well-tested interfaces 
of the captive-suppliers. Although that limited supplier base did simplify problems of interoperability, in 
retrospect, it also led to increased cost and a slow pace of innovation. Finally, the limited number of service 
providers also allowed a closed signaling network, which increased surety, once out-of-band signaling was 
introduced. 

The regulation of the business placed the complexity, and hence cost, into the switching and 
transmission elements that led to relatively low-cost and reliable equipment for the customers. This 
business approach also severely limited the types and brands of equipment that could use the network. So, 
while the pre-competitive infrastructure did provide reliable, universal service, it also stifled service 
innovation. At the same time, the regulated monopoly provided, in essence, lifetime employment for the 
maintenance and operations staff. While this produced a highly-skilled and loyal workforce, it also helped 
increase service costs. 

The twin deficiencies of decreased innovation and increased cost forced the gradual introduction 
of competitive elements into the telecommunications infrastructure. That process began in the U.S. during 
the 1970s. In other countries, telecommunications remains a regulated monopoly. The next subsection 
details some of the infrastructure changes and their effect on overall network surety. 

The Competitive Telecommunications Infrastructure And Its Implications for Surety 
Multiple Unregulated Service Providers. The present competitive infrastructure differs from the older 
telecommunications infrastructure in several important ways. The obvious change is the move to multiple, 



unregulated service providers. The competition among them has reduced telecommunications costs. It has 
also presented the potential for increased reliability in that a cautious business can split its traffic among 
different providers. Other factors may tend to offset the potential for increased reliability, however. For 
example, calls now are commonly routed through more than one service-provider network, which can 
increase the difficulty of determining the exact nature of a problem should one occur. 

Standards-Based Networking. The new competitive service providers usually do not have captive 
suppliers. (Even AT&T finally divested itself of its manufacturing arm, now Lucent Technologies, in 
1996.) As competitive entities, those new service providers must have competitive equipment prices from 
their vendors. This often drives them to a hardware and software mix from multiple vendors which means 
that interoperability is now driven by vendor compliance with industry and international standards. Time-to-
market concerns with this quickly changing technology usually preclude producing the highest quality 
standards. (Version 1.0 of any standard is often filled with bugs.) Another unintended surety-related result 
of standards-based networking is the loss of security via obscurity. Industry-standard software platforms, 
such as UNIX and Windows NT, have well-known vulnerabilities. In addition, smaller service providers 
often use freeware, such as Linux, for which the source code is freely available. In that case, new 
vulnerabilities are easier to find since adversaries have access to the underlying source code as well. To 
offset this potential disadvantage, the source code is also available to more defenders capable of working as 
a distributed community to improve its security. For example, when the SYN floods appeared in recent 
years, Linux patches were available within a matter of hours, while many vendors didn't release patches for 
days or even weeks. 

Multimedia Traffic Mix. Modern networks must carry multimedia traffic (voice, video, real-time data and 
non-real-time data) in one integrated network fabric. This complicates traffic engineering. Overloads 
currently cause about half of the outage-minutes in the U.S. telephone system [Kuh]. The overloads occur 
when the actual service demand exceeds the capacity of the network. For the older infrastructure in such 
situations, the system was designed to block a specified small fraction of the call-origination requests. 
Erlang first modeled that blocking probability in the early 1900s. (Indeed, the Erlang-B and Erlang-C 
models [Kle] are still useful for rough-cut voice-traffic planning.) Subsequent decades of research have 
refined those models. From a business perspective, well-proven, single-service models allow the monopoly 
executives to justify their rate requests to their regulators. From a surety perspective, good models help 
guarantee network service levels. 

The case of multimedia is considerably more complex [Wir] for at least three reasons. First, there 
are new traffic types in addition to voice. Some multimedia types are minor extensions to the 4KHz voice 
transmission. For example, constant bit-rate (CBR) compressed video, such as MPEG-1 and MPEG-2, can 
still use the classical traffic-engineering techniques. Most new services are "bursty," however, because their 
peak and average bit-rates differ. One example is web browsing. Users may spend several minutes reading 
each web-page but then want the next web-page to arrive in seconds. Traditional models assumed that this 
bursty behavior disappeared if call statistics were aggregated over a large enough user population. Recent 
research indicates that assumption is false [Lei], and new models need to be developed. The second reason 
is the traffic mix within each multimedia call. The call origination times and call-holding times for both 
residential and business voice-calls are well characterized. Multimedia calls are more complex. For 
example, a business call may start as voice and then become a video-conference with occasional file-
transfers. Hence, even if each multimedia application has well-known traffic characteristics, the overall 
traffic characteristics of the call may still be difficult to predict. Furthermore, the increased rate of service 
innovation makes modeling even more difficult because the traffic mix may change rapidly. The third 
reason is the growth of wireless and mobile networks. The next subsection discusses that topic further. 

Wireless and Mobile Networking. Wireless connectivity and user mobility are undergoing explosive growth 
in the 1990's. Indeed, in some developing countries, the cellular network is being built before the wired 
infrastructure. In addition, the cellular service providers are migrating from first generation analog cellular 
systems, such as AMPS [Rap], to second generation digital systems such as GSM [Meh]. Furthermore, 
several Low Earth Orbit (LEO) satellite systems, such as Teledisc and Iridium, should become operational 
in the next few years. Finally, wireless LANs are appearing in factories, warehouses and offices. So, for a 



price, users will eventually have seamless, worldwide access to their preferred communications and 
computing environments. 

These factors have a mixed effect on network surety. Mobility certainly complicates traffic 
engineering. It also increases the signaling load on the network. In older networks, users usually signal 
only during call origination. In contrast, mobile users must periodically signal their current location to the 
network, even if they don't have an active call. Mobility today also requires that the user's home network 
share the user's service profile with other networks. This can raise both security concerns for the network 
and privacy concerns for the user. 

The ongoing transition from analog to digital cellular has not made a big impact on the traffic mix 
yet, but the next generation digital cellular systems, such as Wireless Asynchronous Transfer Mode 
(WATM) [TEE], may have a negative impact for several reasons. First, the cell-size will be much smaller. 
Current cellular systems often use cell-sizes of several kilometers. Next generation digital cellular systems 
will probably be "micro-cellular" with cell-sizes of less than 100 meters. This means that good models for 
user-mobility patterns become even more critical. The second reason is the bandwidth per subscriber. 
Current analog cellular systems (AMPS) allocate 30 KHz to each active subscriber, which is less than 1/50* 
of each cell's total available bandwidth. In contrast, WATM systems may have a bandwidth per cell of 20-
30 Mb/s. In addition, one subscriber could use most, or all, of that cell's bandwidth. Small user groups tend 
to complicate statistical modeling, and hence traffic engineering. The final reason is that next generation 
digital cellular systems will also support multimedia traffic, such as MPEG video. As noted above, multiple 
media complicate traffic engineering. 

Digital cellular companies are paying more attention to network security. In general, wireless 
channels are easier to attack than wired ones. Eavesdropping is virtually undetectable. Cryptographic 
techniques can provide privacy, but they usually entail a cost and performance penalty. In conjunction with 
mobility, unauthorized access is more difficult to detect and punish. So wireless system designers should 
include security in the earliest phases of the network design. The AMPS cellular system is one example 
where that was not done. (To be fair, AMPS was designed in the late 1970's and early 1980's before the 
combination of Microsoft's Windows and Intel's microprocessors brought cheap computing power to the 
masses.) AMPS uses clear-text signaling channels. Each handset has a Mobile Identification Number 
(MIN) and an Electronic Serial Number (ESN). For location management purposes, that data must be 
periodically broadcast to the cellular base-stations. As such, it can be easily stolen and -programmed into a 
"clone". That "clone" can then impersonate the real user, and hence steal service. The cellular companies 
now have numerous successful techniques for combating cloning. The simplest is PIN numbers that the 
subscribers enter while dialing a new call. This makes it harder to steal service, but not impossible. The 
need to use the PIN numbers also often annoys customers. Hence, other techniques have been introduced. 
A recent one is RF "fingerprinting". Each AMPS handset has a fairly unique RF signature, and the network 
will only accept calls if the ESN, MIN and RF signatures of the equipment match their stored values. 
Although this technique reduces cellular cloning [Bui], it is still not foolproof. So, a layered security-
approach that uses PIN numbers, RF fingerprints, calling-pattern, location checking, and other similar 
information is still best. 

Another security problem is that AMPS sends the user's speech as clear-text. This flaw has 
embarrassed several prominent individuals. Although cellular scanners are now illegal in this country, they 
are still widely available, as is information on converting legally available equipment to that purpose. 
[War] The AMPS fraud problem has been estimated at $700 million dollars per year in the U.S., which is 
about 3% of total industry revenue. [Bui] Digital systems which use the Cellular Authentication and Voice 
Encryption (CAVE)/IS-41C algorithm are more secure. Recent publications, however, have demonstrated 
weaknesses in both the voice privacy algorithm [Schw] and the authentication protocol[Pate]. Although it 
might appear that the answer for the AMPS security problem is to retrofit CAVE into every handset, that is 
not economically feasible. There are approximately 50 million of the AMPS handsets already in service. 
Security designs for public-network wireless systems should include a low-cost upgrade path. 

Customer-Owned Equipment and Intelligent Content. In the older infrastructure, the regulated monopolies 
attempted to severely limit the types of equipment a customer could use on their network. They also 
centralized switching in their wholly owned network equipment. Those approaches are no longer feasible, 
or possibly even desirable, in the competitive environment. The current Internet philosophy is a prime 



example of that shift. [Ste] That philosophy has the network flow control residing in the TCP layer in the 
end-systems, which then further complicates traffic engineering, since traffic peaks become less predictable. 

As switching and other decisions migrate to customer-owned equipment, executable content 
becomes an issue. Readers are probably familiar with this problem in the context of Java applets or Word-
macro viruses. The network infrastructure can also have similar problems. Proposed active networks may 
increase those problems. [Ten] In active networks, routers and switches perform customized computations 
on individual user data-flows. In addition, individual users can download and modify the programs that 
control those computations. As discussed below, the SS7 signaling network may eventually use active 
network concepts as it evolves into the so-called Advanced Intelligent Networks (ATNs). 

Vulnerabilities of the Physical Plant. Opening the network to greater competition may make general 
network services less vulnerable than the current infrastructure to physical attack if customers are aware of 
the vulnerabilities and diversify their telecommunications services across vendors. The economies of fiber 
optics have led to migration of traffic off diverse media (analog radio, digital radio, coax cable) and onto a 
few fiber optic routes. This minimizes right-of-way and maintenance costs while exploiting the ability to 
expand capacity by factors of ten by either upgrading electronics or putting several different colors of light 
down the fiber (Wavelength Division Multiplexing). These economies have subrogated any concerns for 
network-wide robustness. This was not true in the earlier integrated AT&T network (the "metro junction" 
plan). A few cuts of well-selected fibers would partition large parts of the nationwide telecommunications 
network. The same would be true regarding attacks on telephone equipment offices. Addition of a diversity 
of vendors, especially locally, may eventually enhance the connectivity of the long-distance 
telecommunications network. And the new diversity of local calling media (cellular, satellite, fiber) and 
diversity of protocols (circuit-switched, Internet phone) should make local phone service more robust. 

The physical plant (support systems, physical equipment, etc.) is quite exposed to physical attack. 
In addition, there is no rigorous security culture within emerging telephony that reflects the growing 
importance that telecommunications in playing in the U.S. economy. By rigorous security culture we mean 
a culture that balances the management of the security of telecommunications with economic and service 
performance considerations. While pre-divestiture telephone companies had a strong security culture, the 
move toward more open systems, cost-based market forces, and extremely short time to market has eroded 
this culture. Surety is often at odds with minimized short-term cost and time to market. 

Software Vulnerabilities. Over the last 30 years, telephony has been moving toward total software control 
of the installed switching and transmission equipment (e.g., operations, administrative, and maintenance, 
OAM, systems such as provisioning, monitoring, maintenance, billing; signaling control of circuit/packet 
routing). This change improves service performance and reduces costs, and increasing market pressures 
will ensure this will continue, with new software releases delivered in shorter development times. 
Unfortunately, the ability is lacking to ensure the surety of such an integrated software control system in the 
open telecommunications environment. The Year 2000 may well provide an example of the vulnerability 
of telecommunications to a pervasive software reliability flaw [You]. 

The open network of tomorrow will likely be less resistant to cyber-attacks than the previous 
closed system. Each telephony network, especially the regional telephone systems resulting from the 
breakup of the old AT&T, has on the order of one hundred major legacy operations, administrative and 
maintenance (OAM) software systems that control large portions of the network. Such systems were never 
designed to provide safe, secure access to the telephone network by outsiders. In fact, each of these systems 
is considered a black art in itself, and few telephony experts (some would say none), understand how such 
systems interact under all abnormal conditions. They do not exploit such principles as functional isolation to 
manage the creation of unintended vulnerabilities in the OAM architecture. The ability of an unauthorized 
user to discover a previously unconsidered system vulnerability is substantial. Unfortunately, software 
reliability and security engineering is in its nascent phases. There are strong theoretical reasons why it may 
remain that way for some time to come, so there may not be a technology fix for cyber-attacks on either new 
or legacy systems. 

Changes to the Signaling Network. When we discuss the distributed network of the future, we need to 
describe those elements that will be distributed: transport, switching, and control. For transport and 
switching, distributed capabilities often mean a more robust network. A single network element failure may 



lead to less, or perhaps no, service outage. If the network is properly designed, alternative routings and 
media are provisioned, and a coordination system for managing failures is in place and working. An open 
issue is whether the market will motivate a consortium of providers to coordinate the development of such a 
vendor-diverse system across their various networks - increasing network robustness at lower cost - or 
whether each carrier will perceive account control as too important. A potentially inefficient solution could 
result if each service provider develops his own vendor-diverse network. 

Distributed control is another matter. It is usually difficult to guarantee the surety of coupled 
control systems. A number of well-publicized telecommunications failures have resulted from out-of-
control, coupled distributed control systems (for example, see [Kuh]). In part, this results because it is 
difficult to get information on which to base a proper surety management system: 

• Such systems are difficult to conceptualize or analytically model because they are highly complex, 
nonlinear in their behavior, and have many different inputs, outputs and processing functions; 

• Performing a baseline characterization of them is difficult since many parts of the system may be 
changing at any given time; 

• They are large enough so that organizational barriers get in the way of characterizing and 
understanding the entire coupled system. 

Even if an accurate characterization of the coupled control system could be developed, there may be little 
hope of managing a real-time control system. If the adversary has access to perturb it in clever ways, the 
complicated nature and openness of the system may make it impossible to guarantee its invulnerability to 
attack in advance. 

One goal is to have a single network for all multimedia traffic. The reality is that the Internet and 
phone networks will likely use separate backbone signaling networks for several more years. Both types of 
signaling have their own surety concerns. The old telephone infrastructure used in-band signaling which 
could be exploited with many tools. Out-of-band signaling, over closed Signaling System 7 (SS7) networks 
[Mod], eliminated that vulnerability during the 1980's. The 1990's, however, brought new problems for the 
infrastructure's signaling network. The first one was the return of in-band signaling: TCP/IP uses in-band 
signaling, since the control information rides in the same IP packets as the user data does. [Com] The 
classic exploitation of that is IP source-address spoofing, which became a substantial Internet nuisance. 
Authenticated TCP/IP headers could stop these in-band signaling problems, in theory. However, current 
authentication and key management techniques do not scale well to the planned Gb/s throughputs of the 
Internet backbone routers. The authentication problem is solvable at the local-access level though, if each 
ISP does key management for only its subscribers. In addition, the access speeds are much lower, so 
authentication may be technically feasible. Similarly, router-based source address controls can solve the IP 
spoofing problem to a large extent. This strategy has been applied in many of the newer high-speed 
network infrastructures, including some of the cable-modem infrastructure. Given the distributed, 
transnational nature of the Internet, however, not all ISPs are trustworthy. In-band signaling abuses may not 
have an ideal technical solution. As such, societal solutions must also be used. One example is the so-
called "Internet Death Penalty", wherein other ISPs stop carrying traffic from an ISP that won't police its 
customers' behavior. 

In the classical infrastructure, the signaling network of the telephone was "closed" in that only a 
few large monopolies and government-owed entities had access. In addition, employees from those entities 
wrote the software for the Service Logic Programs (SLPs) that ran on the SS7 network's Service Control 
Points (SCPs). Furthermore, the lack of time-to-market concerns allowed extensive testing of the programs. 
Restructuring has changed this closed system for several reasons [Cas]. The first reason is that third-party 
connections to the SS7 network are mandated by law in the restructured "Advanced Intelligent Network" 
(AIN). Those third parties may include customers as well as other service providers. The customer 
interfaces to their service parameters may be via the Internet. As such, the SS7 network may gradually 
acquire all of the Internet's security problems. One example is one plumber's call-forwarding attack that 
stole business from rival plumbers. [NYT] The second reason is time-to-market concerns that dictate rapid 
service deployment in a competitive marketplace. Rapid deployment, though, often means lower-quality 
software. Consequently, improved software methodologies are a critical research area. The final reason is 
that most SS7 traffic is sent as clear-text. That traffic includes sensitive data such as calling-card PINs and 



credit card numbers. So, as the SS7 network becomes more open, data privacy may require cryptographic 
techniques. 

Another future direction of the telephone network is to move away from channeled circuit-
switched network towards TCP/IP or ATM networks lying on high-capacity transport. These networks 
operate on packets. If traffic routing control for these packet networks is provided to each competing 
vendor, then a malicious consortia of vendors could adversely affect traffic by manipulating the routing and 
creating congestion or failure conditions in the network for competitors, or perhaps for the entire network 
itself. This has its equivalent in market manipulation where the actions of a cartel can impose inefficiencies 
for nonmembers. The challenge is to impose real-time controls that enhance stability and fair operation of 
the network bandwidth marketplace while being minimally intrusive. 

Remote Maintenance and Outsourcing. Competitive service providers are under intense pressure to reduce 
the size of their operations and maintenance staff. These reductions usually take two forms — remote 
maintenance and outsourcing. Remote maintenance allows a centralized help desk to perform 
troubleshooting and some repairs and obviously lowers costs. It can also improve surety. Continuous 
monitoring can often uncover transient and systemic problems before they affect service. On the other 
hand, remote monitoring via the Internet or dial-in modems also introduces all of the standard security 
problems of computer networks into the telecommunications infrastructure. The executable content problem 
may also appear. For example, applet-based remote-monitoring probes might download executable content 
into the ISP backbone routers. 

Outsourcing replaces an in-house maintenance staff with either on-site contractors or a service 
contract. The service contracts are typically with either equipment vendors or firms that specializes in 
network maintenance. These service contracts, which often mandate remote access to the customer's 
network, entail the tradeoffs mentioned above. However there are additional surety tradeoffs. The 
contractors are usually quite knowledgeable about particular hardware/software platforms. Also, their 
multi-company focus often exposes them to a wider range of solutions than in-house staff. These benefits, 
however, are often balanced by their lack of detailed knowledge of, and long-term experience with, the 
quirks of a particular customer's network. Finally, maintenance personnel often have access to sensitive 
company data as it passes through the company's infrastructure. One long-distance company has already 
had a problem with an employee acquiring calling-card numbers off of their SS7 network. It is unclear if 
outsourcing will increase that insider-fraud problem, or not. Outsourcing certainly introduces a number of 
challenges to surety, including but not limited to, incompatibilities in personnel security policies, a lack of 
employee loyalty, surety culture, and group cohesion, an ideal location for the placement of agents, and the 
potential ability for a smaller number of attackers to impact a larger number of systems. 

Human Factors Concerns. Introduction of technology used to be relatively slow and measured, and training 
was thorough. A single vendor made most telephone equipment, and the carriers and equipment providers 
had a large and experienced staff to check and recheck. The telephony future looks like more vendors 
demanding more services from lean-and-mean data-freight providers, in a market with greater vendor and 
service churn and greater demand for quick turnaround in provisioning services. This will lead to more 
people reconfiguring, either physically or logically, various network elements. To provide for the new 
services that opening the network is expected to stimulate, there will be increasingly quick introduction of 
new hardware and software. The combination of these effects will lead to more mistakes being made during 
operations. 

There is no single vendor who is going to take the lead, as the old Western Electric had, in 
improving the human factors of such equipment. It was difficult enough to translate the economic costs of 
poor operations through to effective equipment design when there was one manufacturer, one service 
provider, and appropriate incentives. With a multitude of suppliers and carriers, it is overly optimistic to 
assume the market will make things right, at least in the near term. 

The Risks of Reliance on Redundancy. Not only is redundancy not a panacea, but excessive reliance on it 
can ultimately make a system less reliable, less safe, less secure-less sure. To have redundancy 
implemented correctly, the designer must include the initial design as well as the construction processes and 
operational procedures in his analyses—the entire system as designed, as built, and as operated. 



People often count on redundancy without examining the system in sufficient detail to identify all 
the potential common mode and common cause failures. Seeing what looks like redundancy on a more 
superficial level can make management complacent. Digging deeper, however, can often reveal is a hidden 
shared support requirement among "redundant" systems or components or unrecognized interconnection 
between them. And, the more redundant pathways that are built into a system, the more potential exists that 
at least some of them share interconnections or support. 

This is not just academic. Let two examples from transportation suffice. First is the crash of the 
just barely controllable United Airlines DC-10 at Sioux City, Iowa on July 19, 1989. The DC-10 had three 
"redundant" hydraulic systems, or so the designers and airplane certifiers believed. All three, however, 
shared a particular location, and a single malfunction-a fragment from a failed engine rotor-was the 
common cause for all three to fail concurrently. The systems were not redundant with respect to this fault. 
[NTS] 

Second, the Morton-Thiokol designers and NASA engineers thought that the two O-rings on the 
solid rocket booster used for Challenger were "redundant," in all but one possible scenario. That scenario 
was deemed to be extremely unlikely. For all other situations, their models predicted that either of the O-
rings would individually provide the necessary seal. Unfortunately as we now know, the models were 
wrong, and there was another scenario in which the redundancy failed, an additional common cause for 
double seal failure.[Vau] 

While redundancy may provide coverage for certain classes of faults, redundancy also increases 
component failure rates. Redundant communications paths increase the opportunities for leakage and other 
attacks while increasing the cost of protection of these now separate and different components. The 
elimination of common-mode failures means that we need to do redundant engineering, maintenance, and 
acquisition, and that we need to produce smaller numbers of more different components. Each of these leads 
to inefficiencies from a cost perspective. 

Security vs. Privacy. Network surety has two competing aspects. The first one is society's desire that 
individuals or groups not use public resources for nefarious purposes. The other aspect is a fundamental 
right to privacy for an individual. These privacy concerns can revolve around personal data, such as health, 
purchasing and entertainment records, in addition to fundamental political rights, such as free speech. 
Hence, the appropriate political compromise between security and privacy is still unclear. Strong 
cryptography is one solution to these privacy concerns. [Pla] Encryption allows individuals to communicate 
with reduced overall risk of eavesdropping. PGP remailers allow anonymous web-surfing and USENET 
posting. With the growth of the Internet culture, those cryptographic techniques are now widely available 
from multiple vendors in multiple countries. These same cryptographic techniques, however, also abet 
organized crime and terrorist organizations. Some national governments have instituted bans on private 
cryptography. Others have proposed either key escrow systems or weak cryptographic protocols for their 
nationals. While those proposals reduce individual privacy, they can also place a country's industry at a 
competitive disadvantage. Enforcement is also difficult, given the global nature of the infrastructure. 
Finally, weak cryptographic protocols may be technically dubious. Recent Internet experiments have shown 
that even 56-bit DES is vulnerable to concerted attacks with widely available hardware and software. 

If access to physical plant such as offices is provided and there is a greater availability of high-bit-
rate services by vendors, then there will be greater opportunity for a malicious vendor to access high-bit-
rate lines without authorization and to compromise the integrity, availability, and confidentiality of 
hundreds of voice lines or voice-grade private lines. 

A more open and distributed future for telecommunications is both good and bad from a reliability 
and security standpoint. There may be more routing options, especially for the vanilla data-freight services, 
although it will still be the responsibility of the customer or some third-party provider to design their 
vendor-diverse network robustly. But many of the major failures of the last few years have been either 
software failures, supporting infrastructure failures or subtle system failures. Many signs point to the 
telecommunications infrastructure becoming more vulnerable as restructuring and evolving new 
technologies open the network to rapid, uncoordinated change. 

Information Warfare. As mentioned above when discussing the external threats to the U.S. 
telecommunication infrastructure from terrorists, criminals, and others, one of the threats they pose is 
"Information Warfare "(IW). This term has a distinct military flavor due to the word "warfare." One 



military definition of IW is: "Actions taken to preserve the integrity of one's own information systems from 
exploitation, corruption, or destruction while at the same time exploiting, corrupting, or destroying an 
adversary's information systems." Use of this term by the military has been replaced with "Information 
Dominance," which represents non-wartime protection of U.S. assets and preparation for conflict with 
potential enemies. "Information Warfare" is then reserved for active operations against enemies. 

IW is a fairly broad term which has been interpreted to represent a number of activities which 
directly affect the integrity, use, and flow of information or which affect information in order to produce 
some secondary outcome. Examples include the following: 

• hacking • blackmail 
• diversion • unauthorized use 
• theft of services • propaganda 
• loss of information • terrorist activity 
• bank fraud • economic instability 
• cyber crime • military attack 
• corporate espionage 

In an earlier section we discussed this threat in general.The range of possible IW attacks can also 
be explored by examining the motivation of the attackers in more detail. For the system designer and 
operator another characterization of IW attacks is by how an attack is implemented. The many methods of 
attack can be divided into physical and non-physical (information) attacks. These attacks may result in both 
physical and non-physical impacts. Examples are shown in the following table. 

Attack 

Information/ 
non-physical 

Physical 

Changes caused by attack 
Information/non-physical 

1. Unauthorized remote access to 
telephone switching system 
configuration allows denial of 
service or theft of service 

2. Computer virus is activated 
which could stop, modify or 
purge record of financial 
transactions 

1. Damaging communication cable 
or microwave tower prevents 
communication over the link. 

2. Damaging of one or more 
communication links causes 
remaining links and nodes to be 
jammed with rerouted 
transmissions, slowing and 
stopping certain communications 

Physical 
1. Telephone denial of service outage 

brings down air traffic control 
communications which slows or 
stops flight departures and landings 

2. Access to a satellite control system 
jettisons stabilization fuel which 
reduced life of satellite or causes 
immediate loss of use. 

1. Bombs cause damage to switching 
equipment in strategic locations 
which is difficult and expensive to 
replace and causes denial of service 

2. A telecommunications switching 
center stops working for no apparent 
reason. A truck just drove by and 
emitted a high-power microwave 
pulse, damaging sensitive 
electronics. 

Terrorist IW activities can be grouped into at least three general categories. They can be used to 
disseminate propaganda, to raise funds, and to attack the infrastructure itself. When telecommunications is 
the infrastructure under consideration, the first two of the three also indirectly affect the infrastructure in 
that the unauthorized use of telecommunications channels to either spread falsehoods or to steal or extort 
money would lessen the confidence of the public in the integrity of the telecommunications network. While 
confidence can be restored, it is not instantaneous nor is restoring it without cost, including the cost of lost 
revenue due to public avoidance. 



Unless an attack is physical, (e.g., a bomb), the attacker must get access to the system (e.g., access 
a telephone). Hence, a successful attack must first penetrate and then disrupt the normal operation of the 
telecommunications network. Rathmell has written that 

Terrorist activities in cyberspace may be considered as part of a new kind of war: 
software warfare. When Info Warriors plan to hack or penetrate particular networks, their 
goal is to modify software and, consequently, its proper functions. Conversely, the 
system managers of the targeted information systems have to make sure that software is 
protected and running properly. Other forms of Information Warfare, such as Command 
and Control warfare, Information Infrastructure Warfare, or economic information 
warfare are therefore dependent on the outcome of this competition to control the 
software of information systems. [Rat a] 

This software war-this war for control of the telecommunication system—may involve access to 
an authorized user's password. This can be done, for example, physically by theft from or extortion of an 
insider, treacherously by an insider willingly cooperating, or electronically by a software "sniffer". After 
penetration, if the attacker wants the capability of the system manager or its equivalent, they might 
introduce a Trojan Horse. A Trojan Horse is a program that has undocumented side effects. The attacker 
might also create a software bomb to destroy logic or files at a later point in time. Another possibility is 
viruses (by the end of 1996, about 8000 virus strains were known). They could be used to spread panic or 
could reproduce in such numbers as to cause gridlock. [Rat a] 

The concept of information warfare is not new. After all, the ancient Chinese strategist Sun Tzu 
wrote about confusion, concealment, and deception. As Lawrence Freedman of King's College has wryly 
observed, "Large explosions are a traditional and effective form of information warfare when directed at 
key transmission or storage facilities."[Fre] 

What is new is the evolving ubiquity of the system that can be attacked, and the increasing reliance 
of government and business on the timely flow of accurate information from that system. The 
telecommunications system has so many interconnections and is handling so much traffic that a perturbation 
of it may have great effect, both in rapidity and in breadth of activity, on our lives. Again, Freedman notes 
that "As with so much else modern technology appears to have moved us well beyond the inefficiencies of 
yesteryear but at the price of magnifying the consequences of even a single malfunction."[Fre] 
Malfunctions happen everyday, but they can also result from an attack, and attacks can be designed to make 
the negative effects of the malfunction much greater than those of a single point failure. 

We should not make the success of such an attack seem easier than it would probably be. The 
telecommunications system should not be assumed to be an easy target. "Common sense has led most users 
of modern information technology to take precautions." [Fre] For example, from the software side of 
things, we make backups and control access to our systems. We search for viruses. Yes, penetrations have 
occurred and still occur, but detected attacks have been primarily attributed to hackers, not "cyber-
mercenaries." According to Rathmell, those who warn of IW 

foresee concerted, strategic attacks on the [telecommunications infrastructure] by foreign 
states or organized terrorist groups. They envisage an enemy able to crash the 
telecommunications system, disrupt air and rail traffic control systems, subvert the 
financial system and undermine the power distribution network. All of these activities are 
possible, and the tools and techniques for doing so are readily available on the Internet. 
Carrying out such an attack would however require a sophisticated intelligence study of 
the targets, something which only a few states and organizations could contemplate. 
[Rat b] 

To be successful, the attacker needs a competent attack capability. They are computer literate 
people who are "...highly skilled and trained products of government agencies or corporate intelligence 
branches working on the open market."[Rat a] In addition, the IW attacker requires an extensive knowledge 
of computer networking and must do detailed intelligence work of the network to be attacked. 

The planning of such attacks requires resources, and thus, it is more likely that a larger 
organization would be the sponsor of IW. Would people do it? Medd has written 



Terrorists of the future will likely intensify their targeting of the world's financial 
resources that are being transferred daily over the information highway. By using and 
attacking these financial conduits, terrorists will be able to transfer funds from their 
sponsors as well as to tap illegally into the most vulnerable legitimate transfers of others. 
They could conceivably cripple the financial markets either by direct attacks or by 
instilling doubt in the electronic financial world. [Med] 

The goal of IW attackers "...would be the disruption or destruction of information infrastructures including 
basic services such as power supply, police databases, social security transfers, medical networks, 
transportation signals, money transfers and telephone switching systems."[Rat a] 

Terrorist organizations and rogue states may well prefer to attack in cyberspace. The risks to the 
attacker are reduced, they can attack from a distance, and it is more difficult to prove causality. Freedman 
points out, however, that, if an enemy is not sure that he has the computer expertise at his disposal, as well 
as the right analyses, he ".might well be unsure about relying on clever and subtle forms of electronic 
warfare to disable a critical facility, especially when something cruder, simpler and probably more violent 
will do. Why become a hacker when it is as easy to be a bomber?" [Fre] There is the difference, noted 
above, that a bomber must physically transport the bomb to the site whereas an information warrior could 
do so with only bits being physically transported. 

MITIGATION STRATEGIES 

Issues have been raised above that indicate that surety issues may challenge the future of 
telecommunications. In this section, we introduce several mitigation strategies, strategies that we have 
found useful in many different applications to surety issues that can lessen the likelihood or severity of 
"accidental experiments." These strategies are not mutually exclusive; in fact, the best approach that we 
have found to achieving a sure system is to incorporate a number of them in the design. 

Response to Normal Accidents 

The first principle for designing systems is to make them reliable by using reliable parts. But more 
must be considered in the design. Birman writes, "Even if every component of a system were extremely 
dependable, the story would not end there. Merely interconnecting reliable computers and bug-free 
programs does not yield a robust distributed system. Instead it produces a network that works well under 
most conditions.. ..Some additional form of protection is therefore needed."[Bir] This is particularly true 
when the possibility exists for intelligent attack. What programmers have developed is the same as what 
communications network designers need to continue to develop—fault-tolerant systems that can rapidly re
configure themselves to bypass failed elements, whatever the failure cause. In the case of intelligent attack, 
the volume of the network attacked might very well be much larger and detecting the attack could well be 
more difficult, but the principles for continued system success are the same. The question then is "How do 
we do this?" 

Recall that Perrow considered the susceptibility of a system to have an accident a function of two 
parameters: complexity and tight coupling.[Per] Kuhn has observed that the telecommunications system, 
while it is quite complex, is actually relatively loosely coupled: "In most system, a trade-off can be made 
between simplicity of interactions and looseness of coupling. We can consider the PSTN [the public 
switched telephone network] a loosely coupled system because it can dynamically reroute calls along many 
paths. However, it achieves this loose coupling at the cost of some complex interactions between 
components." He goes on to write, "For a communications system, coupling is probably the more important 
of the two properties [the other is complexity] in determining its capacity to tolerate failures. It is directly 
related to the system's primary function: maintaining connections between points."[Kuh] 

We assert that a means of designing loose coupling into a system, whether complex or simple, is to 
incorporate the concept of the 3 7s (or 3 Ds) into the design. At Sandia, we do this by the creation of a 
"safety theme" for a system that addresses the 3 7s and demonstrate how that theme is achieved by the 
specific design. A possible usage of the concept in telecommunications is to design in isolation so that 



faults do not propagate throughout the system and result in a scenario like the northeast U.S. electric power 
blackout of 1965. For authentication of the communication, make the key incompatible with other signals 
occurring in the system. If faults occur and start to propagate, one can design that portions of the system 
become inoperable. It may well be better to lose part of a system for a short time then all of a system for a 
long time, and some customers may be willing, for a price, to be separable. There are obvious analogies 
here to the electric power grid and the concept of selective blackouts. For security concerns, design the 
system that an unauthorized attempt at access is delayed as long as possible, including detection and 
ultimate defeat in this scope. Provide discrimination between legitimate and illegitimate signals. Again, if 
access is gained, disabling part of the system may be the preferred alternative to contaminating the whole. 

Consequence-Based Analysis 
Portions of the nation's infrastructure are vulnerable to a wide range of potential threats, ranging 

from aging and degradation to physical attacks to malicious intrusion of software systems, whether 
computers or telecommunications switches. While aging and degradation threats are real and can be 
significant, we shall focus in this section on intelligent threats and a strategy to address them called 
"consequence-based analysis." An exact definition of such threats to infrastructures, complete with 
probabilities of occurrence, would enable the U.S. to efficiently design protection and countermeasures. 
Such a definition would also support the identification of critical nodes and allocation of resources to the 
most important areas. Unfortunately, the definition of such a threat has been elusive. Few specifics are 
known although we have these: 

1. The number of computer security incidents has substantially increased 
2. Cyber attacks are hard to detect and trace and are plausibly deniable. 
3. There are indications of wide spread "listening." 
4. Terrorists, organized crime, and foreign governments have access to 

sophisticated technology. 
5. Cyber threats to an organization often arise from within the organization. 
6. Analysis of the new threat may require new approaches by threat analysts. 

It is unlikely that this nation, or any other nation or international body, will have a threat definition 
in the foreseeable future that is sufficiently detailed to be the sole basis for infrastructure protection 
decisions. The problem of threat definition is compounded by the fact that the nature of the threat is ever 
changing. Changes can be caused by: 

1. Advances in threat technology (affects an adversary's capability) 
2. Changes in the local, national or international political climate — some of which may be 

unknown and unknowable to the analyst (effects an adversary's motivation) 
3. Advances in deployed protection technology (as one "hole" is closed, an adversary may seek 

out another point in the system to exploit), and 
4. Advances in the perceived level of system protection (if a system is perceived to be too tough 

to attack, an adversary may seek to attack another system that is perceived to be an "easier 
target"). 

These factors combine to demonstrate that it may never be possible to have an adequate and workable threat 
definition. Even if such a definition could be created, it would be at best difficult to demonstrate its 
completeness, and the task of keeping it up to date would be formidable. 

The protection of critical infrastructures is vital to our nation's ability to effectively respond to 
both natural disasters and hostile acts. However, the lack of a detailed threat definition has historically 
limited the degree to which private industry is willing to invest in infrastructure protection. Protection 
cannot be effectively achieved if industry is not involved, but industry requires, and has thus far not 
received, a clear business case for investing in protection against high-grade threats. Furthermore, the 
proper role of government in protecting privately held assets is being debated. Without some clear rationale 
for a decision as to where responsibility lies for protection, the question is difficult to resolve. 



Sandia has developed a consequence-based approach to the identification of critical nodes that has 
found acceptance with some businesses. For example, this approach is currently used by insurance 
companies at a high level and has been used as the basis for the assessment of nuclear power plant safety. 
The approach incorporates the probabilistic risk assessment methodologies that Sandia has developed for 
and applied to the problem of designing safe, secure nuclear reactor facilities. The consequence-based 
approach provides an identification of critical nodes from a system perspective. The definition of "critical" 
is based on an understanding of the consequences of a failure of a system or component of the system. Not 
all vulnerabilities are critical. When development of this method began, there was no clear definition of the 
threat, but it was recognized that certain consequences (e.g., the release of radioactivity to the atmosphere) 
were unacceptable to the public. Avoidance of these consequences was accomplished by starting from a 
systems design approach, understanding the system operation, identifying failure modes, assessing the risk 
of system failure, identifying critical nodes, and designing safety features. This process allows 
identification of risk so that the costs of protection are viewed in the context of acceptable risk. Similar 
approaches appear to be beneficial for enhancing the security of telecommunications. 

Vulnerability Assessment 
To prepare for a malicious attack, one may perform a vulnerability assessment, which discovers 

specific technical vulnerabilities in a system and the components of which it is comprised. To do this well, 
one must understand thoroughly the spectrum of technologies involved, have insight into the community 
which has the skills to cause damage, and understand the groups/nations that might which to utilize these 
skills [Rat a]. Ideally, such assessments are performed by an independent entity, since the judgement and 
understanding of the system owners may lead to assessments that are colored by the same culture that 
influenced the system designers. Internal self-assessments generally lack the "out of the box" thinking and 
deep maliciousness that could characterize an external entity determined to do harm. 

The results of vulnerability assessments must be kept tightly held since the mitigation of specific 
vulnerabilities may not be completed rapidly. Additionally, the system owner may feel that the probability 
of attack for certain vulnerabilities is low enough and cost of mitigation high enough that leaving the 
vulnerability in place is an acceptable risk. Widespread knowledge of the vulnerability would adversely 
affect the probability of attack. The background and proven discretion of the individuals performing the 
assessment must be understood. 

The spreading telecommunication network has not had system-wide security as a major design 
requirement [Rat b]. In general, vulnerability assessments such as described above have not been 
performed at a level that would capture critical systems-level vulnerabilities. Identifying the vulnerabilities 
of the entire system is a common good, but not necessarily good for a particular company vs. another 
company. Hence, this may be an area where cooperative action involving business and governments may 
be warranted. 

Hardening And Survivability Of Management Layers 
As in all mitigation strategies for the U.S. infrastructure, protecting the management layers should 

involve inclusion of surety both at a component and a systems level. Concepts discussed here are included 
to provide examples. Independent improvements intended to secure information, but added outside of a 
systems perspective, may be ineffective at improving surety of the infrastructure. Improvements must be 
considered at a detailed systems level to avoid overlooking vulnerabilities, or introducing new ones. 

Exact configuration of management layers may depend on particular location, companies involved, 
and technologies selected, and may also depend on the time a particular provider connects to the 
infrastructure and which regulations are in effect. To discuss mitigation strategies here, the management 
layer is divided into several conceptual pieces. The first piece is the physical connections, links, and 
equipment in the management network which carry management information. Second, independent 
command and control functions exist in various systems and equipment which are accessed by a limited 
number of authorized owners or customers. These systems control equipment and network operation in a 
way which normal providers need not access or control (such as fundamental routing information, computer 
codes for network operation, etc.). The third is a network-based command and control network to which 
all providers attach to route information. 

Hardening and survivability of the first component, the physical components which carry 
management information, requires protection from unauthorized access and modification. If an adversary is 



able to deny, alter, or even access this information, it could be used to adversely affect the communication 
network, the providers, or customers. Solutions here may include adding authentication information to the 
management data so attempted alterations would be incompatible with the system. Adding encryption 
would make it very difficult to eavesdrop or alter management data. Monitoring the links for state of health 
and providing redundancies may also improve the physical links. Equipment selected for use in a network 
may have inherent vulnerabilities. These may be identified by an investigation and certification review of 
the equipment using a systems approach. 

Hardening the second component, functionality of independent system command and control, is 
often reliant on surety concepts used for remote and local access to computer systems. These systems are 
typically more secure because they allow limited access by a small set of authorized persons. Often 
passwords are used to control accounts. Is access available remotely over a network, the Internet, a 
telephone line or is only local access available? Are these links protected? Are the networks secure? 
Vulnerabilities of these systems include theft of passwords, password guessing, eavesdropping on links, link 
hijacking, and denial of service attacks. Again, the ability of the system to discriminate between authentic 
and unauthentic messages is paramount. 

The third component has the problem of access by the widest range of individuals and therefore is 
vulnerable because it is more likely for one of these people to be an adversary or make a mistake due to 
incompetence. Limiting functionality at this level is a useful tool to limit possible damage to the 
communication network, yet it will cause more overhead and creation of an elite command and control 
segment. As decisions are made about this tradeoff, other methods of improving surety may be considered. 
Including systems designed with multi-level access, accountability (audit trails), and automated monitors for 
improper use may improve the inherent surety of such a network. 

All of these three conceptual segments could benefit from addition of physical security measures. 
Physical security can be implemented in many ways. Access to particular links and nodes can be disabled 
except for those specifically authorized. Facilities, equipment, and links are located away from streets and 
parking lots which may be bombed. Rooms holding important equipment are locked and entry only granted 
to those who need access. Basic steps used to protect from lightning and radio interference may be 
followed to avoid damage from electromagnetic pulse weapons. Personnel are investigated to help 
eliminate potential adversaries from holding trusted positions. Important concepts to consider in physical 
security are detection, delay, and response. A simple lock may protect access to a room; however, an alarm 
system helps enhance this security. It detects unauthorized entry into that room. Delay mechanisms can be 
used to prevent further access—or even retreat by the intruder—until some response can be made. Response 
may be sending security personnel or simply video-recording the event and intruder. These measures help 
deter unauthorized access. 

Indications and Warning System 
The Defense Science Board postulates that it is possible for an adversary to mount a structured 

attack against infrastructures while disguising the attack as a series of apparently unstructured, random 
events. This scenario is plausible because there is no capability within the U.S. to coordinate among the 
infrastructures an Indications and Warning (I & W) of physical or computer-based attacks. Providing 
I &W of attacks in a timely fashion may be the most difficult technical and organizational challenge facing 
those charged with protecting the U.S. infrastructure. 

Traditional strategic and tactical warning systems may not be useful in providing Indications and 
Warnings of attacks against the U.S. infrastructure. The infrastructure threat is vaguely defined in parts of 
industry and the ability to determine the extent of an attack on the U.S. does not currently exist. The 
technical and organizational challenges are formidable. For example, the information necessary to provide 
the indications of an indirect (subtle or below threshold) or a direct attack would have to come from private 
sector organizations who own the various infrastructure elements. Real-time monitoring of system 
operating parameters is common in most of the infrastructures but the analysis and response of abnormal 
events is focused on maintenance and restoring operation of the system. For an I&W system, the response 
must focus on restoring operation of the system as well as providing warnings to the infrastructure under 
attack as well as the other infrastructures which might be impacted and identifying the adversary for 
criminal prosecution. In addition, certain infrastructures such as the telecommunications industry must 
contend daily with numerous attempts to illegally enter their systems using the computer as a criminal tool. 
This burden of providing security to these infrastructures whose needs differ greatly emphasizes the 



importance of an automated system which recognizes, records and stores selected events for analysis. The 
organizational challenge lies in creating a structure where industry would agree to the monitoring and 
reporting of this data among competitors, law enforcement officials, and other elements of the 
infrastructure. Furthermore, the nation needs the capability to monitor the interdependences among the 
infrastructure elements and use this information to improve the ability to assess the nature and severity of an 
attack. Private industry and government must cooperate to achieve the objective of providing adequate 
response time to assess an attack situation and respond accordingly. 

The I&W problem is by its nature a very large distributed collection of technical and 
organizational issues. The approach should be to a) identify the major participants needed for the I&W 
concept, b) determine the technical problems to be addressed with priorities of importance and c) begin 
coordination of the organizations needed to implement the goals of the I&W concept. 

The features desired in an Indications and Warning system include a) detection of precursors to an 
attack, b) awareness that an attack is in process, c) correlation of disparate attacks, and d) recommendations 
on how to recover from an attack and, perhaps, identification of perpetrators. 

The activity of an I&W effort should be guided by a coordinating center which is the focal point of 
a large matrixed activity. The center would provide the coordination among the infrastructures and liaison 
with the law enforcement community. Analysis by the coordinating center would result in attack warnings 
provided to both industry and the law enforcement. 

Other Mitigation Possibilities 
Technology is advancing and revolutionizing telecommunications. At the same time, its 

advancement will also deliver new mitigation techniques, ones that we cannot foresee at this time. As an 
example, recent research by Rashari Roy at the Georgia Institute of Technology suggests that encoding 
messages into the background noise found in fiber-optic cables has the potential to increase security of 
information transmission. The transmitter and the receiver would both need to know the encryption 
protocol, but without it, no message could be detected within the noise.[Pri] Other examples of innovation 
shall undoubtedly occur in the future. 

CONCLUSION 

The challenges to the telecommunications industry and its stakeholders appear daunting. Above, 
we have briefly discussed how this industry is rapidly changing in the U.S. It is also doing so worldwide. 
Global infrastructure surety will be increasingly dependent upon the various national infrastructures. 
Indeed, the notion of a discrete national infrastructure is losing meaning. The telecommunications 
infrastructure will dramatically reconfigure to incorporate rapid technological advances, will probably grow 
orders of magnitude in terms of the numbers of competing providers, and must respond to an uncertain 
regulatory and legal framework. Surety is easiest to engineer into discrete, well-understood systems. 
Indeed, the exceptional reliability and acceptable security of the current infrastructure are a result of the 
systems engineering environment of the past. The future environment of multiple providers, multiple 
technologies, distributed control, broad access to hardware and software is fundamentally different. The 
solutions that will underlie the surety of the telecommunications infrastructure of the future will be shaped 
by this different environment, and may be expected to differ from the solutions of the past. 

Current policy discussions tend to treat the infrastructure's surety as an expected product of market 
forces. Where there are demands for high reliability or high security, there will be suppliers—at a price. 
Indeed, end customers will have an unprecedented ability to chose to protect themselves by buying services 
that can function as a back-up, demanding services that support individual needs for security, and choosing 
proven performers as suppliers. However, pervasive confidence in the infrastructure, comparable to the 
expectations that are a result of the surety of today's infrastructure, is not guaranteed. The surety of the 
future global telecommunications infrastructure could well be significantly greater that that of today for 
both specialty needs and as a collective average. It could also be lower, if market forces do not result in 
surety requirements comparable to those met today. The ability of the marketplace to anticipate and address 
public expectations around the low probability of occurrence but high consequence events that could result 
from abnormal or malevolent environments remains to be seen. We are moving from an era where the 



surety of the infrastructure was generally predictable and controlled to one in which there are profound 
uncertainties. 

Generally, the private sector does not expect that the market will provide the level of security or 
resilience that would be required to mitigate a serious information warfare attack on the telecommunications 
network or other essential pieces of the infrastructure. The issue of private sector and public sector rights 
and responsibilities as relates to the surety of the telecommunications network remains an intriguing policy 
arena. Within the U.S., the government serves the role of both regulator and concerned customer. Essential 
governmental functions including continuity of government, emergency services, and military operations 
depend upon the surety of the telecommunications industry. Institutions such as NSTAC and the NCC 
have provided an effective forum for working these issues cooperatively. Their role and their effectiveness 
in the dramatically changed policy, business, and technical environment of the future remain to be defined. 
Recent initiatives external to government include the recent Manhattan Cyber Project, described in a press 
release as "a concentrated outreach initiative between industry, government, and academia to address the 
cyber threat impact on the National Information Infrastructure and competitiveness of corporate America." 
The recommendations of the President's Commission on Critical Infrastructure Protection [PCC], and the 
public and private sector response to those recommendations, are critical to anticipating the future 
public/private sector relationship as to the surety of the telecommunications piece of the infrastructure. 
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