Diamond Measuring Machine

PDF Version Also Available for Download.

Description

The fundamental goal of this project was to develop additional capabilities to the diamond measuring prototype, work out technical difficulties associated with the original device, and perform automated measurements which are accurate and repeatable. For this project, FM and T was responsible for the overall system design, edge extraction, and defect extraction and identification. AccuGem provided a lab and computer equipment in Lawrence, 3D modeling, industry expertise, and sets of diamonds for testing. The system executive software which controls stone positioning, lighting, focusing, report generation, and data acquisition was written in Microsoft Visual Basic 6, while data analysis and modeling ... continued below

Physical Description

8 pages

Creation Information

Krstulic, J.F. January 27, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Kansas City Plant (U.S.)
    Publisher Info: Kansas City Plant, Kansas City, MO (United States)
    Place of Publication: Kansas City, Missouri

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The fundamental goal of this project was to develop additional capabilities to the diamond measuring prototype, work out technical difficulties associated with the original device, and perform automated measurements which are accurate and repeatable. For this project, FM and T was responsible for the overall system design, edge extraction, and defect extraction and identification. AccuGem provided a lab and computer equipment in Lawrence, 3D modeling, industry expertise, and sets of diamonds for testing. The system executive software which controls stone positioning, lighting, focusing, report generation, and data acquisition was written in Microsoft Visual Basic 6, while data analysis and modeling were compiled in C/C++ DLLs. All scanning parameters and extracted data are stored in a central database and available for automated analysis and reporting. The Phase 1 study showed that data can be extracted and measured from diamond scans, but most of the information had to be manually extracted. In this Phase 2 project, all data required for geometric modeling and defect identification were automatically extracted and passed to a 3D modeling module for analysis. Algorithms were developed which automatically adjusted both light levels and stone focus positioning for each diamond-under-test. After a diamond is analyzed and measurements are completed, a report is printed for the customer which shows carat weight, summarizes stone geometry information, lists defects and their size, displays a picture of the diamond, and shows a plot of defects on a top view drawing of the stone. Initial emphasis of defect extraction was on identification of feathers, pinpoints, and crystals. Defects were plotted color-coded by industry standards for inclusions (red), blemishes (green), and unknown defects (blue). Diamonds with a wide variety of cut quality, size, and number of defects were tested in the machine. Edge extraction, defect extraction, and modeling code were tested for multiple runs of each stone. Although there were problems with a few stones, the machine automatically completed measurements on a majority of the stones tested. A demo was performed in Lawrence for AccuGem stockholders and potential investors. The demo successfully demonstrated our technology on a random stone brought by an attendee. In conclusion, the project was successful in development of the basic technology required for a diamond measuring machine. Continued improvements in lighting control, edge and defect extraction, and an increased image depth-of-field will increase the reliability and consistency of measurements. Although additional work is needed to make the machine a commercial product, there are no foreseeable technical roadblocks in that process.

Physical Description

8 pages

Notes

OSTI as DE00750426

Source

  • Other Information: PBD: 27 Jan 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: KCP-613-6280
  • Report No.: CRADA 98KCP1072
  • Grant Number: AC04-76DP00613
  • DOI: 10.2172/750426 | External Link
  • Office of Scientific & Technical Information Report Number: 750426
  • Archival Resource Key: ark:/67531/metadc710461

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 27, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 20, 2017, 7:15 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Krstulic, J.F. Diamond Measuring Machine, report, January 27, 2000; Kansas City, Missouri. (digital.library.unt.edu/ark:/67531/metadc710461/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.