Final Report of the
High Energy Physics Group
at the
University of South Alabama
for DoE Grant DE-FG05-90ER40564

Final Report
April 15, 1990 - April 14, 1997

C. M. Jenkins and R. K. Clark
Department of Physics
University of South Alabama
Mobile, Alabama 36688

August 15, 1998

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
UNDER GRANT NUMBER DE-FG05-90ER40564

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The experimental high energy physics group at the University of South Alabama worked on three experiments conducted at the Fermi National Accelerator Laboratory partially funded by the Department of Energy (grant DE-FG05-90ER40564) which spanned the years of 1990 to 1997. These experiments were E-705, E-771 and E-871. Our group helped in taking data, analysis of data, and for one experiment in the construction of a new spectrometer from scratch. Results from this work include 33 papers published in conference proceedings, pre-prints and refereed journals (See Appendix A). Twelve talks were given at conferences by members of our group (see Appendix B). We also sent two undergraduate students to work at Fermilab during the data collection phase of E-771 and had several other undergraduate students working on projects related to this research locally at the University of South Alabama.

Experiment E-705 had completed data collection before our group was formed and funded. This experiment used 300 GeV/c p, π−, p and π+ on Li to study hadronic production of charmonium and direct photon production. Since a member of our group had helped in the construction of the E-705 spectrometer and data collection as a Post Doc, we participated in the E-705 data analysis. We brought up the tracking program on the Alabama
Cray supercomputer (Cray XMP/24 that was available to researchers in the State of Alabama). Over 70 raw data tapes were processed using this computer. Some of these tapes were used in the calibration of the electromagnetic calorimeter for electron identification.

Our group helped in the assembly of the E-771 spectrometer (essentially the E-705 spectrometer with a silicon micro-vertex detector and improved muon detection). E-771 used 800 GeV/c p-Si interactions to study hadronic beauty production and charmonium production. Our task was to bring up the electromagnetic calorimeter and interface it into the new data acquisition system using a new Fast Bus ADC (which during the course of two runs was expanded from two to four crates to facilitate a faster read out time for the data acquisition). This task include writing code to include the ADC's in the data acquisition system, and code to decode the ADC information in the analysis package. In addition our group was responsible for the computerized high voltage power supply system that powered all photomultiplier tubes for the experiment. Our group helped in the data collection of this experiment. The USA group also worked on the online software to monitor the electromagnetic calorimeter.

Off-line work done for the analysis of E-771 concentrated on the elec-
tromagnetic reconstruction package. We used the Cray supercomputer to generate new shower pattern tables for the electromagnetic calorimeter from the EGS monte carlo. We also parameterized the electron and photon energy deposition in the calorimeter again from the EGS monte carlo. We also parameterized the time vs energy deposition inside the main array glass blocks of the electromagnetic calorimeter.

Other work done in conjunction with E-771 included the development of a tracking program that used the Hough Transformation. This algorithm was also easily expanded into a vertex algorithm too. Although this algorithm was developed and tested with Pythia generated monte carlo events it was not used to process data.

Our group was also part of the P-876 proposal which requested for more beam time for E-771. The original runs of E-771 resulted in very little data as readouts for the silicon vertex detector were late. This request was subsequently turned down by Fermilab.

Our group was also part of a letter of intent for a Fixed target B experiment to the Superconducting Super Collider Laboratory. However in August of 1992 we withdrew from the Fixed target experiment and were accepted into the SDC collaboration. This realignment was in response to the State
of Alabama EPSCORE call for proposals where we would be part of a state
wide consortium including the University of Alabama High Energy Group.
The EPSCORE proposal was one of six proposals accepted but was later cut
due to insufficient funding. Our group and University hosted an group of
representatives from the SSC laboratory in 1992.

When the SSC Laboratory was terminated, our group applied for equip-
ment that was being distributed to High Energy Physics and Nuclear Physics
groups supported by the Department of Energy. Our group applied for equip-
ment and received several computer systems and other laboratory electronics.

In March of 1994 our group joined Fermilab Experiment E-871 (the Hy-
perCP experiment). This experiment is a search for CP violation in the
decay sequence of \(\Xi^- \rightarrow \Lambda \pi^- \rightarrow p\pi^-\pi^- \) and the anti-particle decay sequence
of \(\Xi^+ \rightarrow \Lambda \pi^+ \rightarrow p\pi^+\pi^+ \). Our group took responsibility for the scintilla-
tion trigger hodoscopes to be used by the experiment. This included monte
arlo simulations to determine the placement of the trigger hodoscopes and
the design of the scintillator counters. We submitted a supplemental equip-
ment proposal to the Department of Energy to obtain funding to build the
scintillation counters and hodoscope stand.

Our group tested a large number of photomultiplier tubes and bases to
select the best ones to use in the trigger hodoscope. With the supplemental funding, our group procured the scintillator, light guides and wrapping material for the counters. Fifty scintillator counters were subsequently assembled at the University of South Alabama and tested. The hodoscope stand was designed and constructed again at the University of South Alabama. These components were shipped to the experiment and installed by the our group in the spectrometer. Our group was brought up the computerized high voltage power supply that powers all photomultiplier tubes used by the experiment (this includes re-writing the software to interact via CAMAC).

Once beam was delivered to the HyperCP experiment, our group helped in the spectrometer commissioning. We plateaued the scintillation hodoscope counters with beam and timed in the counters. We helped in setting up the trigger logic for the experiment. We took shifts to collect data and to monitor the spectrometer.

During the run, we wrote the on-line monitoring software for the scintillation trigger hodoscope. We also converted an event display program that was not satisfactory into the event display package that is now standard for the experiment (in fact the standard release used by the experiment is a total re-write of the code).
In 1994 we were invited by the University of Alabama to help organize the Southern Association for High Energy Physics Meeting on the Gulf. The organizers wanted to expand this meeting from a purely Theory Meeting into a joint Experimental-Theory meeting. We organize the Experimental Section from 1994 and 1995.
Appendix A

Publications

The following is a list of publications that members of the University of South Alabama High Energy Physics Group are on the authors list.

2) S. Conetti et al., “Performance of a 0.75 mm pitch MWPC’s operating at high rate”, IEEE Trans. on Nucl. Sci., NS36 (1989) 112.

Appendix B
Presentations

Presentations by members of the High Energy Physics Group at the University of South Alabama.

1) C. M. Jenkins et al., “A Fixed Target Experiment at the SSC”,

2) C. M. Jenkins et al., “A Fixed Target Experiment at the SSC”,

4) C. M. Jenkins et al., “Presentation of Preliminary Results from Fermilab Experiment E-771”, Departmental Colloquium given at the University of Southern Mississippi, April 23, 1993.

and Image Processing”, Departmental Colloquium, Naval Research Laboratory, Stennis Space Center, Mississippi, November 16, 1993.

11) C. M. Jenkins et al., “Fermilab Experiment E-871: Search of CP Violation in Ξ^-/Ξ^+ and $\Lambda/\bar{\Lambda}$ Decay”, Fourth Annual SAHEP Meeting on the Gulf, January 3-5, 1995, Gulf Shores, Alabama.