Parallel Computation Chemistry Using Constraints: Final Report, LDRD 97-0301, Case 3504140000

PDF Version Also Available for Download.

Description

Computer modeling to estimate material properties, design chem/bio sensors, and evaluate protein-protein interactions all require solving force field equations for molecular structures that contain tens of thousands of covalently connected atoms. Potential energy minimization is a key step in the calculation, but stiff covalent bonding forces make optimization difficult and expensive. This two-year LDRD developed two classes of advanced minimization algorithms that were specialized for chemistry applications and distributed computing machines. The project led to two successful algorithms that were implemented in three Sandia computational chemistry codes to support various users.

Physical Description

18 p.

Creation Information

Plantenga, Todd D. November 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Computer modeling to estimate material properties, design chem/bio sensors, and evaluate protein-protein interactions all require solving force field equations for molecular structures that contain tens of thousands of covalently connected atoms. Potential energy minimization is a key step in the calculation, but stiff covalent bonding forces make optimization difficult and expensive. This two-year LDRD developed two classes of advanced minimization algorithms that were specialized for chemistry applications and distributed computing machines. The project led to two successful algorithms that were implemented in three Sandia computational chemistry codes to support various users.

Physical Description

18 p.

Notes

OSTI as DE00751006

Medium: P; Size: 18 pages

Source

  • Other Information: PBD: 1 Nov 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND99-8201
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/751006 | External Link
  • Office of Scientific & Technical Information Report Number: 751006
  • Archival Resource Key: ark:/67531/metadc710261

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 4:09 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Plantenga, Todd D. Parallel Computation Chemistry Using Constraints: Final Report, LDRD 97-0301, Case 3504140000, report, November 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc710261/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.