Properties of low residual stress silicon oxynitrides used as a sacrificial layer

PDF Version Also Available for Download.

Description

Low residual stress silicon oxynitride thin films are investigated for use as a replacement for silicon dioxide (SiO{sub 2}) as sacrificial layer in surface micromachined microelectrical-mechanical systems (MEMS). It is observed that the level of residual stress in oxynitrides is a function of the nitrogen content in the film. MEMS film stacks are prepared using both SiO{sub 2} and oxynitride sacrificial layers. Wafer bow measurements indicate that wafers processed with oxynitride release layers are significantly flatter. Polycrystalline Si (poly-Si) cantilevers fabricated under the same conditions are observed to be flatter when processed with oxynitride rather than SiO{sub 2} sacrificial layers. ... continued below

Physical Description

8 p.

Creation Information

Habermehl, S. D.; Glenzinski, A. K.; Halliburton, W. M. & Sniegowski, J. J. January 4, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 25 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Low residual stress silicon oxynitride thin films are investigated for use as a replacement for silicon dioxide (SiO{sub 2}) as sacrificial layer in surface micromachined microelectrical-mechanical systems (MEMS). It is observed that the level of residual stress in oxynitrides is a function of the nitrogen content in the film. MEMS film stacks are prepared using both SiO{sub 2} and oxynitride sacrificial layers. Wafer bow measurements indicate that wafers processed with oxynitride release layers are significantly flatter. Polycrystalline Si (poly-Si) cantilevers fabricated under the same conditions are observed to be flatter when processed with oxynitride rather than SiO{sub 2} sacrificial layers. These results are attributed to the lower post-processing residual stress of oxynitride compared to SiO{sub 2} and reduced thermal mismatch to poly-Si.

Physical Description

8 p.

Notes

OSTI as DE00750232

Medium: P; Size: 8 pages

Source

  • Materials Research Society, Boston, MA (US), 11/29/1999--12/03/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-0050C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 750232
  • Archival Resource Key: ark:/67531/metadc710246

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 4, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 11, 2017, 6:12 p.m.

Usage Statistics

When was this article last used?

Yesterday: 1
Past 30 days: 3
Total Uses: 25

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Habermehl, S. D.; Glenzinski, A. K.; Halliburton, W. M. & Sniegowski, J. J. Properties of low residual stress silicon oxynitrides used as a sacrificial layer, article, January 4, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc710246/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.