A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750

PDF Version Also Available for Download.

Description

Hydrogen has been shown to degrade the mechanical properties of nickel-base alloys. This degradation occurs whether the material is in a hydrogen producing environment or if the material has dissolved hydrogen in the metal due to prior exposure to hydrogen. Materials behave differently under these two conditions. Therefore, the degradation due to hydrogen has been split into two categories, internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE). IHE may be defined as the embrittlement of a material that has been charged with hydrogen prior to testing or service while HEE may be defined by the embrittlement of a material ... continued below

Physical Description

48 p.

Creation Information

Symons, D.M. December 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

  • Bettis Atomic Power Laboratory
    Publisher Info: Bettis Atomic Power Lab., West Mifflin, PA (United States)
    Place of Publication: West Mifflin, Pennsylvania

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Hydrogen has been shown to degrade the mechanical properties of nickel-base alloys. This degradation occurs whether the material is in a hydrogen producing environment or if the material has dissolved hydrogen in the metal due to prior exposure to hydrogen. Materials behave differently under these two conditions. Therefore, the degradation due to hydrogen has been split into two categories, internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE). IHE may be defined as the embrittlement of a material that has been charged with hydrogen prior to testing or service while HEE may be defined by the embrittlement of a material in a hydrogen environment where the hydrogen may come from gaseous hydrogen or generated from a corrosion reaction. This work will compare IHE and HEE of fracture mechanics specimens. Different fugacities of hydrogen for HEE and hydrogen concentrations for IHE were examined for Alloy X-750, a nickel-base super alloy. The test results were analyzed and the role of hydrogen in IHE and HEE was evaluated. A model based on a critical grain boundary hydrogen concentration will be proposed to describe the behavior in both HEE and IHE conditions.

Physical Description

48 p.

Notes

OSTI as DE00755396

Medium: P; Size: 48 pages

Source

  • Journal Name: Engineering Fracture Mechanics; Other Information: Submitted to Engineering Fracture Mechanics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: B-T-3256
  • Grant Number: AC11-98PN38206
  • Office of Scientific & Technical Information Report Number: 755396
  • Archival Resource Key: ark:/67531/metadc710120

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2017, 7:07 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Symons, D.M. A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750, article, December 1, 1999; West Mifflin, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc710120/: accessed July 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.