GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates

PDF Version Also Available for Download.

Description

The authors have investigated the properties of GaAsSb/InGaAs type-II bilayer quantum well structures grown by molecule beam epitaxy for use in long-wavelength lasers on GaAs substrates. Structures with layer, strains and thicknesses designed to be thermodynamically stable against dislocation formation exhibit room-temperature photoluminescence at wavelengths as long as 1.43 {mu}m. The photoluminescence emission wavelength is significantly affected by growth temperature and the sequence of layer growth (InGaAs/GaAsSb vs GaAsSb/InGaAs), suggesting that Sb and/or In segregation results in non-ideal interfaces under certain growth conditions. At low injection currents, double heterostructure lasers with GaAsSb/InGaAs bilayer quantum well active regions display electroluminescence at ... continued below

Physical Description

17 p.

Creation Information

Klem, John F.; Spahn, Olga B.; Kurtz, Steven R.; Fritz, Ian J. & Choquette, Kent D. March 15, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The authors have investigated the properties of GaAsSb/InGaAs type-II bilayer quantum well structures grown by molecule beam epitaxy for use in long-wavelength lasers on GaAs substrates. Structures with layer, strains and thicknesses designed to be thermodynamically stable against dislocation formation exhibit room-temperature photoluminescence at wavelengths as long as 1.43 {mu}m. The photoluminescence emission wavelength is significantly affected by growth temperature and the sequence of layer growth (InGaAs/GaAsSb vs GaAsSb/InGaAs), suggesting that Sb and/or In segregation results in non-ideal interfaces under certain growth conditions. At low injection currents, double heterostructure lasers with GaAsSb/InGaAs bilayer quantum well active regions display electroluminescence at wavelengths comparable to those obtained in photoluminescence, but at higher currents the electroluminescence shifts to shorter wavelengths. Lasers have been obtained with threshold current densities as low as 120 A/cm{sup 2} at 1.17 {mu}m, and 2.1 kA/cm{sup 2} at 1.21 {mu}m.

Physical Description

17 p.

Notes

OSTI as DE00752665

Medium: P; Size: 17 pages

Source

  • Journal Name: Journal of Vacuum Science and Technology B; Other Information: Submitted to Journal of Vacuum Science and Technology B

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-0689J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 752665
  • Archival Resource Key: ark:/67531/metadc710064

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 15, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 3:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Klem, John F.; Spahn, Olga B.; Kurtz, Steven R.; Fritz, Ian J. & Choquette, Kent D. GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates, article, March 15, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc710064/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.