Performance of the accelerator driver of Jefferson Laboratory's Free-Electron Laser

PDF Version Also Available for Download.

Description

The driver for Jefferson Lab's infrared free-electron laser is a superconducting, recirculating accelerator that recovers about 75% of the electron-beam energy and converts it to radiofrequency power. It is designed to lase continuous-wave at 3--6 {mu}m at kW-level power. In achieving first light, the accelerator operated straight ahead to deliver 38 MeV, 1.1 mA cw current through the wiggler for lasing at wavelengths in the vicinity of 5 {mu}m. The waste beam was then sent directly to a dump, bypassing the recirculation loop. Stable operation at power levels up to 311 W cw have thus far been achieved in this ... continued below

Physical Description

269 Kilobytes pages

Creation Information

Bohn, C.L. September 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The driver for Jefferson Lab's infrared free-electron laser is a superconducting, recirculating accelerator that recovers about 75% of the electron-beam energy and converts it to radiofrequency power. It is designed to lase continuous-wave at 3--6 {mu}m at kW-level power. In achieving first light, the accelerator operated straight ahead to deliver 38 MeV, 1.1 mA cw current through the wiggler for lasing at wavelengths in the vicinity of 5 {mu}m. The waste beam was then sent directly to a dump, bypassing the recirculation loop. Stable operation at power levels up to 311 W cw have thus far been achieved in this mode. The accelerator has recently recirculated up to 0.6 mA cw current with energy recovery. In this mode it has lased pulsed and cw at low-power. It remains to clean up the transport for high-power cw lasing.

Physical Description

269 Kilobytes pages

Source

  • Other Information: PBD: 1 Sep 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/ER/40150-1356
  • Report No.: JLAB-ACC-98-10
  • Grant Number: AC05-84ER40150
  • Office of Scientific & Technical Information Report Number: 754516
  • Archival Resource Key: ark:/67531/metadc710050

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 5, 2016, 8:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bohn, C.L. Performance of the accelerator driver of Jefferson Laboratory's Free-Electron Laser, article, September 1, 1998; Newport News, Virginia. (digital.library.unt.edu/ark:/67531/metadc710050/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.