
=%?’3

‘,
1

..’ - s’

1

This

Solving Complex-valued Linear Systems
ovia Equivalent Real Formulations * ~ 3H”)
a:=

David Day and Mike Heroux 4S

May 9, 2000
-Ill

C3

Abstract

Most algorithms used in preconditioned iterative methods are generally applicable to complex valued
linear systems, with real valued linear systems simply being a special case. However, most iterative solver
packages available today focus exclusively on real vafued systems, or deal with complex valued systems
as an afterthought. One obvious approach to addressing this problem is to recasb the complex problem
into one of a several equivalent real forms and then use a real valued solver to solve the related system.
However, well-known theoretical results showing unfavorable spectral properties for the equivalent real
forms have diminished enthusiasm for this approach.

At the same time, our experience has shown us that there are situations where using an equivalent
real form can be very effective. In this paper, we explore this approach, giving both theoretical and
experimental evidence that an equivalent real form can be usefuf for a number of practical situations.
Furthermore, we show that by making good use of some of the advance features of modem solver pack-
ages, we can easily generate equivalent real form preconditioners that are computationally efficient and
mathematically identical to their complex counterparts.

Using our techniques, we are able to solve very ili-condi tioned complex valued linear systems for a
variety of large scale applications. However, more importantly, we shed more light on the effectiveness
of equivalent real forms and more clearly delineate how and when they should be used.

Introduction

work addresses the problem of solving a complex valued linear system -

Cw=d (1)

iteratively, where C is an m-by-n known complex matrix, d is a known right hand side and w is unknown.
Although most preconditioners and iterative methods are directly applicable to complex valued linear systems

[4], most preconditioned iterative solver packages deal only with real valued systems. There are some notable
exceptions, including QMRPACK [6] and PETSC [3, 2, 1]. This work explains when and how to leverage

existing real-valued solver packages for use with complex-valued systems.

1.1 The K1 and K2 Formulations
, .-

It is well known that if we write Gw = d separated into real and imaginary parts, i.e.,

(A+iB)(z+iy)=b+ic

then the solution is equivalent to that of the system:

(: -X)=c)

(2)

(3)

DISCLAIMER

This report was prepared as an account of work sponsored
byan agency of the United States Government; Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

An alternate formulation is:

(~ -0(-0=(9
(4)

For future reference, we call Equation 3 the Komplex-1 or K1 formulation (and denote the matrix by KI)
and Equation 4 the Komplex-2 or K2 formulation.

The K1 and K2 formulations have been studied before (see [7]) and the common belief is that these
approaches are generally a bad idea. This is primarily because if A is an eigenvalue of C, then ~ is an
eigenvalue of K1. If C has all eigenvalues on one side of the imaginary axis, then the spectrum of KI should
not present a major problem to iterative methods such as GMRES. However, if C has eigenvalues on both
sides of the imaginary axis, a property that causes difficulty for GMRES, then KI will have twice as many
bad eigenvalues. Furthermore, the convex hull containing the eigenvalues of KI will contain the origin, an
additional bad property for convergence of GMRES.

The situation for the K2 formulation is even worse. If A is an eigenvalue of K2, then {-A, ~, –~} are
all eigenvalues of K2. Thus, no matter how well we precondition the K2 problem, the convex hull of the

eigenvalues will always contains the origin.
Because of the above properties, the K1 and K2 formulations have been justly criticized. Particularly, the

K2 formulation does not appear to be usable. However, we have found that a variation of the K 1 formulation
does indeed have merit, if a sufficiently good preconditioned is applied to problem, something that we found is

generally required to achieve convergence, even when using a complex solver on the original complex system.

In fact, our experience shows that for the classes of problems we are solving, if a good preconditioned is used,
then the iteration count of the K formulation discussed below is generally comparable (within 50$ZO)to that

of solving the original complex problem with a true complex preconditioned iterative solver, and has the
same robustness as a true complex solver. Given the wide availability of good real valued solver packages,
we view our results as noteworthy.

2 Approaches to Solving Real Equivalent Systems

In trying to solve the original complex system in Equation 1 via the K 1 formulation in Equation 3, the

most interesting question is how to precondition K1. Applying standard real valued preconditioners such as
Jacobi, Gauss-Seidel or ILU directly to K1 brings a variety of problems. Generally we found that they were
not robust enough for our needs. Furthermore, applying ILU to K1 was complicated by its unusual sparsity
pattern.

Another approach we tried was to focus on preconditioning just the (1,1) and (2,2) blocks in Equation 3 by
using a standard real valued preconditioned, denoted MA, applied to A, the real part of C. The preconditioned

then became:

(M: M:)
(5)

Again, we found that this approach was not robust enough for our problems, providing a large degradation

in iteration count or an outright failure to converge, while the solution of the complex system
solver succeeded. Furthermore, the related approach of putting B and –B (by swapping
Equation 3) also failed.

via a complex

block rows in

>.

2.1 The K Formulation

The final approach that we tried, one which consistently gives us good results, was to make the following
observation: If cij = aij + @’ bij is a nonzero entry of C then we can apply the K 1 formulation directly
to each entry of C to generate a 2-by-2 block entry of the form

(6)

1.7 .

This leads to the K

blocks and each (iJ)

then

2.2

formulation where the matrix K is a 2m-by-2n real matrix partitioned in to 2-by-2
block entry of K is of the form in Equation6 correspondingto cjj. For example, if

bll all o 0 bls als o 0 bls a15

o 0 azz –b22 a23 –b23 00 00

0 0 bzz a22 b23 a23 00 00
as 1 –b31 o 0 a= –b= a% –b= 00

K=
b31 asl o 0 b= am am –b% 00

00 0 0 adz –b43 a44 –b44 00

00 0 0 b43 ads ad.f –b44 00
as 1 –b51 00 00 0 0 a55 –b55

\ b51 asl I 00000 0 bss ass j

(7)

(8)

Implementation within Existing Software Packages

The K formulation defined above has several nice properties that allow us to implement efficient and robust
preconditioned iterative solvers for complex linear systems. It allows us to efficiently compute and apply
the exact equivalent of a complex valued preconditioned and it has sufficiently good spectral properties that,
when properly preconditioned, allow for good convergence relative to a true complex solver.

Several full-featured solver packages, e.g., Aztec [12] and PETSC [2], support block entry matrices. Ma-
trices of this form are sparse, but each entry of the matrix is a dense matrix itself. The matrix K in the
Komplex formulation has a natural 2-by-2 block structure that can be exploited by using block entry data
structures. By using the block entry features of these packages we get the following benefits:

1. Applying 2-by-2 block Jacobi scaling to K corresponds exactly to applying point Jacobi scaling to C.

2. The block sparsity pattern of K exactly matches the point sparsity pattern of C. Thus, any pattern
based preconditioners such as BILU(k) applied to K correspond exactly to ILU(k) applied to C.

3. Any drop tolerance based complex preconditioned has a straight-forward K formulation since the ab
solute value of a complex entry equals the scaled Frobenius norm of the corresponding block entry in

K.

Thus, by using these block entry features, we can easily and efficiently construct preconditioners for K+ -
that are equivalent to those we would form for C if we used a true complex formulation. As a result, our

preconditioned matrix operation is identical to the true complex preconditioned operator up to a permutation.
This implies that solving the real equivalent form via the K formulation using a preconditioned iterative

method is identical to solving the original complex system using a corresponding preconditioned complex
solver, except that they are using different inner product spaces.

3 Properties of the K Formulation

preconditioned as well as the coefficient matrix. A K1 formulation transforms the eigen- and singular value

decompositions adversely, from the perspective of an iterative linear solver. In this section we show that the

K formulation transforms in preconditioned complex linear system in the same way that the K1 formulation

transforms the coefficient matrix. In contrast to the unpreconditioned case though, preconditioned iterative

linear solvers are insensitive to the K formulation. Iterative methods applied to poorly preconditioned
systems do not converge in either formulation and, if applied to a well preconditioned systems, converge at

essentially the same rate.

We use the following framework to comparing preconditioned iterative linear solvers For clarity a zero

initial guess is assumed. A left-preconditioned KryIov solver is an algorithm that determines a sequence of

approximations to z from the corresponding expanding Krylov subspaces

Xk(M-lC, M-id)= span(M-ld,..., (M-lC)k-lM-ld) (9)

Right-preconditioning is similar. A preconditioned Krylov solver succeeds to the extent that the algorithm
converges in a small number of iterations.

Characterizing good preconditioners is hard. A crude measure of the quality of the preconditioned M is
the maximum ratio of singular values,

cond(kf-lC). (lo)
The convergence rate of GMRES is bounded in terms of the eigenvalues and condition number of the matrix
of eigenvectors of M -1 C [11]. In this section we show that in our approach the Krylov subspace, (9), and the
condition number, (10), of complex preconditioned linear system are preserved. Additionally, the condition

number of the matrix of eigenvectors is also preserved.
We use the function ~() to denote the matrix K that corresponds to an arbitrary complex matrix C in

the K 1 transformation,

f(c) = K
The K formulation of a preconditioned Krylov subspace method with preconditioned M applies the precon-
ditioned f(M) to J(C). The matrix K = ~(C) is formed explicitly, but linear systems

f(w[;]=[:l
are only solved implicitly by solving M(z + iy) = u + iv in (simulated) complex arithmetic.

The key to understanding the K formulation is that ~ is a homomorphism,

{

~(1) = I
f(xY) = f(x)f(Y) “

This observation appears not to have been made before in this context. From this one can deduce relations
such aa j(X-l Y) = ~(X) -l/(Y).

The proposed method preserves Krylov subspaces in the sense that

f((M-lC)kM-l) = (f(M)-if(C))kj(M)-l

This statement applies to left preconditioning. A similar statement applies if right preconditioning is used.
A prerequisite to discussing condition numbers is to relate the singular values decomposition (SVD) of C,

c = mv”
to the SVD of ~(C). Problem 8.6.4 in [8] is to show that if U = U,+iUU and V = V, +iVU, where Ur,uujvr,vu

are real then ~(C) has the SVD

In particular ~ preserves condition numbers. This implies the second property, that conditioning is preserved
from the complex case:

For clarity wc discuss eigenvalues in the unpreconditioned case. But as above these results to extend to

the preconditioned case. As mentioned in the introduction, eigenvalues of K are either eigenvalues of C or

their conjugates. More precisely, Proposition 5.1 of [7] states that if C has Jordan normal form,

C = XJX-l

then K = /(C) = Wdiag(J, ~)W-l for

‘=[-: a
An observation not made explicitly in [7] though, is that it immediately follows that

cond(W’) = cond(X)

3.1 Convergence of the K Formulation

In this section the sensitivity of the convergence rate of an iterative method to a K formulation is quantified for

certain classes of model problems. For Hermit ian linear systems the K formulation preserves the convergence
rate. For linear system with asymmetric preconditioned spectrum (see Figure l), the convergence rate

degrades mildly in a K formulation.
The most important difference between K and C is that the eigenvalues of K are to eigenvalues of C

together with their conjugates; c(K) = a(C) U~ where co denotes the matrix spectrum. The asymptotic

convergence factor for polynomial based methods, including preconditioned Krylov subspace methods, is N if

the residual norms decrease like t?’. Successful preconditioning transforms the spectrum into a disk far from
O. In the K formulation the asymptotic convergence factor is the same if this disk is centered on the real axis.
In this section we determine the influence on the convergence rate of preconditioners that map the spectrum
to a disk not centered on the real axis. Fortunately in practice preconditioners cluster the spectrum about 1.

For example if C is Hermitian, then a(K) = cr(C), and the asymptotic convergence factors are the same in
the complex and Komplex formulations. But if C is skew-Hermitian, then cr(C) is a subset of the imaginary
axis, and in the K formulation iterative linear solution methods can converge much more slowly. In the skew

Hermitian case, the slower convergence is avoided by using the K formulation of the Hermitian linear system
~Cw = ~d.

A sharp upper bound for the ‘asymptotic convergence factor’ can be determined using the complex Greens
function for the convex hull of the spectrum. Following [5] pages 90-93, an iterative method for Cw = d
(hopefully) determines {wi} that converge to w and residual, ri = d – Cwi that converge to zero. Consider
the polynomial based iterative solution method

r. = p.(C)ro, pn(0) = 1

where each pn G IIn, the space of nth degree polynomials. Next let Q be a set containing u(C), and define

Common choices for L?are the convex hull of u(C), a disk, or an ellipse with major axis along a ray through
the origin. For clarity, let’s assume that C is diagonalizable, CV = VA. The reduction in the residual norm

I[rnllz = llpn(C)rO112 < cond(V)]lpn110(C)]]rO112 < cond(V)llpnllollrO]12
>

is bounded above by the spectral condition number of V and Ilpn Iln. A residual polynomial pn that minimizes

!lp~!b is an optimal polynomial ?“(t; !2, O) and solves

llPn(t;f2,0)llQ = min{llplln : p ● IIn,p(0) = 1}, O @ $2

The convergence of an iteration rn = pn (C)r. is related to the asymptotic convergence factor for the

polynomial iteration method induced by p“,

The asymptotic convergence factor for Q is defined by

~(fl)=inf sup ~(C; pn)
P. C(C)CQ

The asymptotic convergence factor corresponding to the K formulation is N(Q U ~).

Next redetermine the=ymptotic convergence fwtorfor Canal Kin*verd chmmteristicc=~. ~($2)
is determined from the the Green’s function G(z; C?c)for the complement Q= of Q with pole at infinity

I@) = IG(O; C?c)l

If f2 is connected, then G is a conformal mapping from flc to the open unit disk such that G(cm) = O. In
general G has the following properties:

. G(z; Cle) is an analytic function on W with single valued modulus IG(z; W) I < 1 in G!e.

● G(z; f2c) has precisely one zero at W.

● If z ~ &?, then IG(z; S2C)I= 1.

We give four examples of evaluating ~(fl) using Green’s functions. Examples one and three come from
[5]. Example two is classical and reviewed here in detail. Example four appears to be new. The first two

exampks correspond to the case in which C is Hermitian positive definite and WC is Hermitian positive

definite. In these examples, 1 denotes the interval [–1, 1].
Example 1. If C is Hermitian positive definite, then the convex hull of a(C) = u(K) is Q = [a, J3] for

O < a < P. The first step is to derive the Green’s function for the complement of the interval G(z; lc), an
inverse of the Joukowski map ~(z) = (z + 2-1)/2. We select the square root function with branch cut along
the negative real axis and

Note that the branch cut for the argument function is along the positive real axis, and for p >1,

lim arg(z2 –l)=2m
z4p,3(z)<o

Here ~(z) denotes the imaginary part of the complex number z. In this case the singularity in #-1 along
[1, m] has been removed, and because ~-1 is odd, ~-1 is analytic on 1’. To show that d-1 maps J’ to the

open unit disk, note that the equation 4(z) = w is a quadratic polynomial in z and @(z) = ~(z-l).
Now for S2= [a, f?] such that O < a < ~, G(z; Oc) = #-l(f(z)) for t(t) = (2t – a – ,8)/(~ – a) and

Example 2. If iC is Hermitian positive definite, then the convex hull of u(C) is [is, i/3] for O < CY< @ and

tc(i[cr, ~]) = tc([cr, ~]). But a(~) c [–i~, –is] U [is, i@] and tc([-i/3, –is] U [is, i/3]) = ~([–~, –a] U [cr, ~]).
The first step is to derive the Green’s function for the complement of symmetric intervals $2 = [–1, –q] U [q, 1]

for q = a/8 <1. The Green’s function is a branch of the solution of .-

$2+2
222 – (1 +T2)

l–q2 *+1=0

The two branches

(

2

++= + +/(22 – 1)(Z2 – ~2)_z2+*
)

satisfy ~+.@_ = 1, and we seek a branch whose range is the open unit disk. We choose the branch of
+~(z2 – 1)(z2 – q2) that is nearest to z 2. The branch cut for ~ is along the negative real axis and

.

This gives us the Green’s function

{ L* /(%2 - 1)(Z’ - q’) – 22 + *
G(z) = ‘2)

z’_y2>q

~—)
(zW)(z2-q2)-z2+~ z2–y2<*

To show that the range of G is the open unit disk, note that # is a quadratic polynomial and 14*\ = 1 if
and only if q2 < Z2 ~~. In this case K(Q) = (1 – q)/(1 +q) = (~– cz)/(@+cY).

Examples one and two quantify the difference between the K1 and Kz formulations for the special case
of a Hermitian positive definite linear system with eigenvalues in [a, P]. In the K1 formulation,

while for the K2 formulation the factor is much larger:

K2R1–2; >>K1

m
I \

I 1

t I

I I

\ /

\ I

\ !

\ /

\ /
\ /

\ /
,‘. .

-. -.-”

Figure 1: Asymmetric preconditioned spectrum

Examples three and four quantify the penalty for using the K formulation instead of the true compIex
formulation if the convex hull of the preconditioned spectrum lies inside a disk in the left half plane rotated
by 0 from the positive real axis. our analysis only applies in the case in which d is small enough that the

disk intersects its conjugate. In complex arithmetic, the asymptotic convergence factor is independent of 8,

but in the K formulation the asymptotic convergence factor mildly with 0.

Example 3. For a disk 0 = {.z :12 – WI < r} not containing O (i.e. r < Iwl) a conformal mapping onto the
open unit disk is G(z; Q) = & and

Example 4. Here C?comes from rotating the disk {z : Iz – pl < r} with center p >0 by O and then reflecting
though the real axis. I assume that circles intersect, sin 0< q = r/p. This is illustrated in figure 1

The conformal mapping of the exterior of two intersecting circles to the open unit disk is given by

Two Intersecting Cimles
1

0.5

.
.“””

a)“

-0.5

-1
0 0.5 1 1.5 2

Second v = #, x = pi/alpha
2

1

0

r

+

-1

0

First w=(z-left~(z+ight)
1

0.5 .

0 .

+
-0.5 ~

-1-
-1 -0.5 0 0.5 1

Third u = (v-1)/(v+l)
1 -

0.5 ‘

o 0

-0.5 ~

-1_2 ~

-2 -1 0 1 2 :1 -0.5 0 0.5 1

Figure 2: Conformal mapping in three steps

where

~=coso-m ~=cc’s6+-

Also Wxla = exp(~ log w) for Iog w = log Iwl + iarg w and the

“=T-2tan-’(&)
branch for the argument function is placed

along the negative real axis, —i~ < arg w ~ i~. In this case

~(!d) = (1 – (p/v) x/a)/(l + (p/v)T’a) = r+

3.2 Summary of K Formulation Properties

$1- r’)log(~) +0(6’)

Based on the previous results of this section, we see that the K formulation differs from a true complex

iterative solver only in the inner product space used by the iterative method. In other words, by utilizing. .
the block entry data structures mentioned in Section 2.2, we are able to provide the identical preconditioned
matrix multiply computations using the K formulation as we would for a true complex solver.

Furthermore, for complex Hermitian problems, there is no difference in asymptotic convergence rates. In
fact, as is well known (e.g., see Problem 8.3.6 in [8]), if a complex matrix C is Hermitian (positive definite),

the corresponding K matrix K = ~(z) is symmetric (positive definite) with identical eigenvalues having twice

the multiplicity. Given the ability of the conjugate gradient method to resolve multiple identical eigenvalues
simultaneously, we observe in practice that K formulation has identical convergence properties as a true
complex solver for complex Hermitian problems.

For the non-Hermitian case, we saw from Examples 3 and 4 above that, if the disk enclosing the spectrum
of the preconditioned matrix C is not far from the point (1,0) in the com
convergence rate of the K formulation is close to the convergence rate of

.:. . .
8 “ .- :,,,:.,:~j~...

..

Eiganvaiuaca d od@nal MS02 comPiax msfslx (1024 svak 49 PO% S75 W)

. .

-1 I
4 , , t ,

-70 -SO-YJ 40-30 -20 -lo 0

Figure 3: Eigenvalues of the original complex matrix in problem M3D2.

rate dictated by the size of the angle O in Figure 1. .4s we will see in the next Section 3.3, a high quality

preconditioned tends to move the s&ctrum o~ C toward (1,0), setting up very favorable conditions for the

K formulation.

3.3 Spectral Case Study

For the problem M3D2 listed in Table 1, we computed the spectrum of the original and preconditioned
matrix using the eig function of Matlab. Figure 3 shows the distribution of eigenvalues for the original
matrixl. Figure 4 shows the eigenvalues for the K matrix and, as expected, the eigenvalues of the K matrix
are the eigenvalues of the complex matrix plus their reflection about the real. axis.

Figure 5 shows the spectrum of preconditioned matrix using luinc (A, le-1) from Matlab. This is an

incomplete LU preconditioned that uses a drop tolerance of 10- 1. Note that the eigenvalues start to cluster
around the point (1,0) in the complex plane. Figure 6 shows the spectrum using luinc (A, le-2). With the

exception of one outlyer, the eigenvalues are becoming very closely clustered around (1,0).
Coupling this observation with the analysis from Section 3.1, we see that high quality precondition-

ing, which tends to cluster the eigenvalues around the point (1,0), additionally minimizes the differences
in asymptotic convergence rates between the true complex formulation and the K formulation. Thus, it

simultaneously improves the convergence of both formulations and reduces the differences in convergence
rates between them.

4 Experimental Results

We have used the K formulation to solve complex linear systems coming from two application areas (see

Table 1): molecular dynamics and linear stability analysis. Each linear system comes from a real application
and is very ill-conditioned. In addition, because some of these users are solving eigenvalues problems via

shift-and-invert methods, the solution of the complex system must be very accurate. We have found that
the K formulation with a strong ILU preconditioned has been very effective.

1A note of thanks to Tom Wright and Nick ‘Refethen. They analyzed pseudospectra of this matrix and determined that the

E-lues ofKon@8xVe$siond ?4302matrix

,... ...!

.:

+..:

,. ..,..;

,, . .

.:.

....... .:.

.. :.

..........

:.. .

. ,,.:.....‘!

-70 40 -6040-20-20 -lo 0 3

Figure 4: Eigenvalues of the K formulation matrix in problem M3D2.

Eigemakes d pman6kmd M3CJ2cmnF4cIxmaoix wlh ltinc(Ale-1)
0.6 $ I 1 ,

+!
+

*.. +

+ $

... ..;

.......

+’

+ + .++.

+ +
++.*.’. .,...,,#J#

:+ .+4+++++++:
,, .,,

.;.

L

:++:
,,.,.... +. .:,,. ..,,3.,;...... ,,

++ :++ *;,

““”’””””;”””””+”+””{”””””””””!””’”””:+ ,..,.,,, ..:..,.

-0.8L-
-1 0 0s 1 1s 2 2.5

by luinc(A, Ie-1).Figure 5: Eigenvalues of the complex matrix in problem M3D2, preconditioned

Eiivdues d pmcmmmd M24Y2 mmpisxmatrix wilh luinc(Als-2)

Figure 6:

:+:
+: “+ ;+

+: :++ +: # :
+’ ●%

*
..+..+.+ ,$$$+ ++

......................,,

.........

.....:........

...

.

+!

:+
+:..,
+ :+

.........

.....

.

.......

+

.......

.........,.

....<....

:..

.......

.+

, t
0.4 0.6 0.8 1 1.2 1.4 1,6 1.8 2

Eigenvalues of the complex matrix in problem M3D2, preconditioned

2

by lulnc(A, le-2).

Problem Dim # Nonzeros Description

MSD2 1024 12480 Computational Chemistry Model I, Sherry Li,
LBL/NERSC

M4D2 10000 127400 Computational Chemistry Model 11, Sherry Li,
LBL/NERSC

LINSTABI 10590 276979 MPSalsa Linear Stability Analysis, Andrew
Salinger, Rich Lehoucq, Cayley Thnsform Ap-
proach

LINSTA B2 10590 276979 MPSalsa Linear Stability Analysis, Andrew
Salinger, Shift = 33*sqrt (-1)

Table 1: Test Problem Descriptions.

. ●✌
✌✎

Problem droptol nz(ILU)/nz(A) llr[[/llbll C item K Iters

M3D2 1 x 10-3 5.8 3 x 10-11 12 12
M3D2 1 x 10-2 4.5 8 X 10-11 30 40

M3D2 1 x IO-J 0.5 5 x 10-11 107 181

M4D2 1 x 10-4 13.1 5 x 10-11 17 23

MAD2 1 x 10-3 6.7 6 X 10-11 72 109
1

I LkWAl?l I 1 X 10-3 I
I , I ,

10.7 I 9 x 10-11 I 71 I 931

Table 2: MATLAB Test Results Using GMRES(CO) with luinc(droptol) Preconditioning.

EElEB31
Problem levjili llr}l/llbll A’ lters Time(s

Table 3: Aztec Test Results for M4D2 Using GMRES(CO) with Block ILU Preconditioning, 8-by-8 blocks.

The first set of results (in Table 2) come from a ,Matlab code where we compare a true complex precon-
ditioned iterative solver to the K formulation. For these problems, the preconditioned operators are exactly

equivalent, i.e., using the notation from Section 3, if MC and MK are the complex and Komplex precondi-
tioners respectively, then MK = ?(MC). Thus, what we are comparing are the differences due to having a
complex inner product over n-space versus a real inner product over 2n-space. Note that as the quality of
the preconditioned improves, the difference in iteration counts between the two approach diminishes.

Our Matlab results did not have any relevant solution time statistics, so we cannot get precise measure-
ment of relative costs. However, the results in Table 3 show that the higher quality preconditioners also
provide the best time to solution. These results are from the Komplex Solver Package [9], an add-on module
to Aztec. We used a Block ILU preconditioned with 8-by-8 blocks and non-restarted GM RES. The best time
to solution comes from BILU with a level fill of 2. This result suggests a general observation that a high

quaIity preconditioned provides both the best time to solution and makes the difference in iteration counts
between the true complex and the K formulations minimal.

The final set of results (in Table 4) comes from using the Komplex Solver package to solve linear stability
problems in computational fluid dynamics. The primary purpose of these results is to illustrate that, with

minimal new software development, we are able to provide a full-featured parallel preconditioned iterative
solver for complex valued linear systems by leveraging existing real valued solvers. Results are given for 1,

2 and 4 processors of a PGbased Beowulf [10] cluster.

Problem nz(IL U)/nz(A) llrll/llbl\ # Proc K Iters Time(s)
LINSTAB1 4.8 4 x lo-la 1 61 115.0
LINSTAB1 2 58 51.4
LINSTAB1 4 67 35.8
LINSTAB2 3.0 3 x 10-12 1 73 79.0
LIiWTAB2 2 67 34.8

LINSTAB2 4 72 29.1

Table 4: Aztec Test Results Using GMRES(oo) with ILUT Preconditioning.

.

5 Conclusions

In this paper we presented a discussion of how to solve complex valued linear systems via equivalent real
forms. We listed approaches that failed, and presented the K formulation which works very well. Although

it is clear from our results that the K formulation is not superior to a true complex solver, and clearly if you

have easy access to a complex valued solver you should use it, we do think that equivalent real forms should
receive more attention than they have in the past.

For many challenging problems, a high-quality preconditioned is a requirement for convergence. Such a

preconditioned has the tendency to map the spectrum around the point (1,0) in the complex plane. This in

turn, as the analysis in Section 3.1 shows, minimizes the spectral difference between a true complex valued

iterative solver and the K formulation, and leads to our observation that the requirement of a high quality
preconditioned simultaneously provides the best solution times and diminishes the convergence differences
between a true complex iterative solver and the K formulation.

Finally, for application such as linear stability analysis where all operators are real valued except for the
presence of complex shift value, the equivalent real form can be very attractive since it utilizes the native
real valued solver and installation of the K formulation usually involves minimal extra effort on the part of
the application developer.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

S. Balay, W. Gropp, L. lMcInnes, and B. Smith. Efficient management of parallelism in object oriented
numerical software libraries. ln E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modem Sojtware
Tools in Scientific Computing, pages 163-202. Birkhauser Press, 1997.

S. Balay, W. Gropp, L. Mclnnes, and B. Smith. PETSC 2.0 users manual. Technical Report ANL-95/I I
- Revision 2.0.22, Argonne National Laboratory, 1998.

S. Balay, W. Gropp, L. McInnes, and B. Smith. PETSC home page. http: //www.mcs.anl.gov/petsc,
1998.

R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. van der Vorst. Templates for the solution of linear systems : building blocks for itemtive methods.
SIAM, Philadelphia, PA, USA, 1994.

B. Fischer. Polynomial based itemtion methods for symmetric linear systems. Wiley Teubner, 1st

edition, 1996.

R. Freund and N. Nachtigal. QMRPACK: a package of QiMR algorithms. ACM Tmns. Math. Sojtw.,
22(1):46-77, March 1996.

R.-W. Freund. Conjugate gradient-type methods for linear systems with complex symmetric coefficient
matrices. SIAM J. Sci. C’omput., 13:425-448, 1992.

G. Golub and C. Van Loan. Matrix computations. The Johns Hopkins University Press, 3rd edition,
1996.

Michael A. Heroux. The Komplex Solver Package Reference Manual 1.0. Sandia National Laboratories,

Albuquerque, NM 87185,2000.

Phil Merkey. Beowulf home page. http: //beowulf.gsfc. nasa.gov, 1999.

Y. Saad. Itemtive methods for sparse linear systems. PWS Publishing Company, 1st edition, 1996.

Ray S. Tuminaro, Michael A. Heroux Scott. A. Hutchinson, and J. N. Shadid. O@cial Aztec User’s
Guide, Version 2.1, Sandia National Laboratories, Albuquerque, NM 87185, 1999.

13

