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Abstract

Pion photoproduction up to 770 MeV photon laboratory energy is described by a
manifestly covariant wave equation, which includes a treatment of the final state # N
interactions consistent with the covariant, unitary, resonance model of x NV scattering
previcusly developed. The kernel of the equation includes nucleon (N), Roper (N*),
Delta (A), and Dy poles and their crossed poles, as well as x, p, and w exchange terms.
The Kroll-Rudermann term and other interaction currents insure that the model is
exactly gauge invariant to all orders in the strong coupling, g-nxa, and that the low
energy theorem is satisfied. Unitarity is maintained up to first order in the charge e
(Watson theorem). The complete development of this model, which gives a good fit to
all the data up to 770 MeV, is presented.

1. OVERVIEW, RESULTS AND CONCLUSIONS
A. Introduction

Pion photoproduction has been studied for many years. One of the earliest
models, developed by Chew, Goldberger, Low and Nambu, is based on dispersion
theory [1]. It included nucleon Born terms and A-excitation and described the
reaction up to 500 MeV photon lab energy. Further study (using pseudoscalar
NN coupling) was undertaken by Donnachie [2]. Among later efforts is the
work based on chiral lagrangians carried out by Olsson and Osypowski [3]. They
used pseudovector NN coupling and also introduced w exchange. This work
was further developed by Wittman, et al. [4]. More recently, Nozawa, Blanklei-
der and Lee [5] developed a dynamical model of pion photoproduction in which
they used a separable interaction to describe the final state =N interactions.
Lee and Pearce [6] improved on this description by using a reduction of Bethe-
Salpeter equation to treat the meson nucleon interaction in the final state. They
calculated photoproduction observables up to 500 lab photon energy. However,
with the construciion of powerful new facilities such as the Continous Electron
Beam Accelerator Facility (CEBAF), it is necessary to have a good description
of pion photoproduction which extends up to higher energies. Such description
must be covariant, gauge invariant to all order of the strong coupling constants,
and inclide not only the nucleon (N} and delta (A) resonances, but also the
Roper (N*) which plays a prominent role in the isospin 4 amplitudes and the
Dy3 (1520) which makes large contributions to D-waves.

In this paper we present a simple, covariant, gauge invariant and unitary



model for # photoproduction which works well up to 770 MeV photon lab energy.
This model is fully consistent with a slightly modified version of our previously
published model for 7NV scattering [7], described in Sec. HI. The modifications in
the 7N model were made in order to (i) improve the threshold behaviour (scat-
tering lengths), (i) more faithfully approximate the physics of the 7N channels
which account for the inelasticity, (i) have a better form factor for further exten-
sions of the model and (iv) reduce the complexity of the 7y interaction currents
by minimizing the energy dependence of the #N interaction kerne! which gen-
erates these interaction currents. We have introduced a new form for the aNA
and 7N D3 vertices which makes the calculatjons simpler. At all times we have
tried to keep both the 7N and x photoproduction models as simple as possible
(without sacrificing essential physics) so that they may be consistenily used as
input to NN scattering and deutron photodisintegration calculations.

In this work the pion photoproduction multipole amplitudes are obtained from
the solution of a relativistic wave equation, in which the pion is restricted to its
mass shell in all intermediate states except in the pion pole diagram, which is
needed to keep gauge invariance. The rationale for this approach is described in
our #IV paper [7]. As in wN scattering, in order to describe the resonances at
photon lab energy ~ 300, ~ 450, and ~ 760 MeV, the kernel or driving terms of
the relativistic integral equation include undressed A, N*, and Dy3 poles in addi-
tion to the undressed nucleon pole. The kernel also includes contributions derived
from crossed N, A, N*, and D3 diagrams and from w and p exchange terms.
The w exchange is claimed to give a significant contribution to the M4 (3) am-
plitude and M; _( %) amplitudes (for an explanation of the multipole notation see
subsection B below, and Appendix B) [3]. Although the p exchange contribution
is claimed to be small [8], it is still included in our model. We believe that it will
contribute to the M;_(1/2) and M,_(1/2) channels. Besides that we also would
like to get an estimate of the strength of the 7y interaction. Gur approximation
scheme makes the crossed A and D3 poles zero, as in the # N model. This makes
the model simpler and the numerical calculations easier, and is consistent with
other approximations we have made. The crossed nucleon pole is treated exactly
because of its importance in the proof of gauge invariance, and the crossed Roper
is also treated exactly because it has the same properties as the nucleon. All of
these driving terms are shown diagrammatically in F ig. 1. The Kroll-Ruderman
term (contact diagram) and the additional interaction currents needed to make
the model gauge invariant are described in Secs. I and IV. The solution which
emerges from the integral equation (which includes the Born terms shown in
Fig. 1 plus the final state interactions illustrated in Fig. 2), automatically satis-
fies unitarity up to the first order in e (referred to as the Watson theorem) [9}.

fel) (e2) fe3)

Figure 1: Diagramatic representation of the driving terms for pion-
photoproduction. Pions are dashed lines (with an x if it is on shell},
baryons are solid lines, and the big solid circles represent fully dressed
vertex functions, as discussed in Sec. II.

Features of our 7 photoproduction model which are consistent with the 7N
scattering model include the following: (i) the NN coupling is taken to be a
superposition of both pseudoscalar (75} and pseudovector {(7"vs) coupling; (it)
the nucleon self energy is constrained to be zero at the nucleon pole, so that
the nucleon mass remains unshifted by the interaction; (it) contributions from
the Roper (N*) and (N* «— N) transition amplitudes are iterated to all orders,
giving a consistent description of the Roper and its width; and (iv) the A and
Dy are treated as pure spin 3/2 particles, which the same propagators used in
the 7N mode].

In the remainder of this section we will describe the history and background
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Figure 2: Diagramatic representation of the final state interactions for pion-
photoproduction. The solid circle surrounded by an open circle represents
the full #V scattering amplitude.

of some aspects of pion photoproduction such as the E2/M1 ratio, low energy
theorem, unitarity, and gauge invariance. The general theory is described in
Sec. II. After a description of the modifications in the 7N model given in Sec. II1,
the n photoproduction model is described in Sec. 1V. The Appendices discuss
some technical points.

B. The F2/M1 ratio

The tensor interaction between quarks, such as the one which arises from the
one-gluon-exchange interaction, gives a small D state admixture to the predom-
inantly S state wave functions of the nucleon and the A. This tensor interaction
leads to a resonant electric quadrupole amplitude Ey+(3) (or E2) which is very
small compared to the resonant magnetic dipole amplitude Mi14(3) (or M1).
[Here the amplitudes are denoted by Eiy(I) and Mp1(1), where I is the orbital
angular momentum of the photoproduced pion, the + sign refers to the total 7N
angular momentum j = [+ 1/2, and [ is the isospin of the 7N system. The non
vanishing E2 amplitude is one of the signals of the I state admixture. Therefore
it is important to determine the E2 amplitude in order to test various quark
model predictions.

There have been several attempts to measure the E2 amplitude, but it is
difficult to get an accurate value because the £2 amplitude is very small compared
to the dominant M;) amplitude, and the background is comparatively large [10}.
The analyses of the data using several models shows that although all of the
calculations agree that E2 is small, there is considerable uncertainty as to its
preceise size. Results for the E2/M1 ratio which are listed in the Review of
Particle Properties [11] are £2/M1= —1.1+ 0.4%, —1.5+ 0.2%, [4], 3.7 + 0.4%
[12] and —1.3 4 0.5%. Some other calculations give: E2/M1 = —3.1% (5], —4%
(13}, and 0% [14]). These differences are a reflection of the fact that extraction of
the £2/M1 ratio from the large experimental background requires a theoretical
model for both the A resonance and the background, and the result one obtains
is therefore sensitive to how the theoretical models are unitarized, and to how the
background is described [5). We expect that new, accurate data from CEBAF
experiments, and new, more complete models of 7 photoproduction, will help to
clarify the situation.

The value of the £2/M1 which we obtain from our fit (at the resonance pole
Wiot = MA) is

E2/M1=—1.46%. (1.1)

This is small and negative, in agreement with some of the results given above.
This value was calculated from the A-pole diagram only, and does not include any
contributions from the background. The total E2/M1 ratio, including background
contributions, is —0.63.



C. Low Energy Theorem

The low energy theorem (LET) was derived for the first time by Kroll and
Ruderman [15] from an examination of the implications of gauge invariance in
the framework of field theory. Later Fubini et al. [16], extended this theory by
including the hypothesis of a partially conserved axial current (PCAC). In view
of the LET, threshold pion production on the nucleon was considered to be well
understood. According to the original LET prediction the threshold value of the
electric dipole amplitude for x° photoproduction from protons is

Eot|LET = —Eg'?”ﬁz—p (1 - —2%(3+n,,)) 10 (5)3

-3
= —M + correction , (1.2)

where  is the pion mass. However it was a big surprise when an analysis of the
Saclay data {17] showed that the experimental threshold amplitude Ey+ for «°
photoproduction was smaller than the prediction of LET by about a factor of five

(—0.5+0.3) x 10-3
- .

(1.3)

E(HIe:'pt =
The Mainz analysis [18] confirmed this result, and renewed interest in the LET.
Possible flaws in the derivation of the LET due to final state interactions (19],
corrections to the chiral perturbation expansion [20], or chiral symmetry break-
ing corrections [21-23), were proposed. A new contribution of order p/m (which

ariges from logarithmic singularities of some one-loop diagrams in the chiral per-
turbatien expansion) was discovered [20], giving a corrected LET

€ m? 3
Eot|opr = "'%A,’;T# [1 - 5::—3 (3+rcp+ B_F—z)] +0 (%)
n

-3
= —Ei?-(;w— + correction , (1.4)

where Fy is the pion decay constant. Then, instead of extracting the low energy
result from the differential cross section, Bernstein and Holstein [24] and Drechsel
and Tiator [25] used the total eross section (which was not analyzed by the Mainz
group} and obtained:

(-2.040.2) x 10-3
+ = .

Ey
H

(1.5)

It is clear that the threshold value of £y will continue to be of interest, and that
it may be a case where the chiral perturbation expansion is slow to converge.
The result we obtain for the electric dipole amplitude at threshold,
—1.34 x 1073

Bpy = =2 X107 (1.6)
B

is very close to the result (1.4).

D. Unitarity

Symbolically, the unitarity statement can be written [see Eq. (2.14) below]
im M:‘y =—Px M:;M:T — Py M:‘;M'?'; ' (17)

where M2, Mg, and MY, are the #N, pion photoproduction, and compton
scattering matrices for a state with quantum numbers o, and px and p, are phase
space factors for the 7N and vV intermediate states. In 1954 Watson [9] pointed
out that the second term in Eq. (1.7) is very small because it contains no terms
which are first order in e (the electric charge), and can therefore be neglected.
Below the two pion production threshold, the phase of the pion photoproduction
amplitude for a state a will therefore be equal to the phase of # N scattering in
the same channel. This statement can be explicitly written

M2 = |MZ | 1.8
¥ ¥

where &7, is the partial wave phase shift for =V scattering. The Watson state-
ment (1.8), sometimes called the Watson theorem, will start breaking down above
the two pion production threshold.

Unitarity was incorporated into models based on dispersion relations by Chew,
Goldberger, Low, and Nambu (CGLN) [1] and by Fubini, Nambu, and Wataghin
[26]. Early models based on effective lagrangians were not unitary [3,27] but
were later unitarized [3,28,20). As pointed out by Araki and Afnan [30) quark
models based on effective lagrangians are hard to interpret because it is difficult
to establish the connection between the coupling constants in the lagrangian and
observed interaction strengths.

The importance of unitarity was recently pointed out by Nozawa, Blankleider
and Lee (BNL) [5], who claim that it is imposible to fit the M 1+ and By, multi-
poles with a norunitarity model. The same observation was made by Wittman,
Davidson, and Mukhopadhyay [4] who also showed that the result for these am-
plitudes can be improved by unitarizing the model. These models are unitary



because they use a covariant integral equation with solutions which are auto-
matically unitary. Ohta and Tanabe [12] and Yang [13] use an integral equation
with a separable 7N potential. While their result is unitary, the value of Ey4 at
threshold is sensitive to the particular separable expansion used, and they are not
able to determine a unique value of Eq+. To obtain a unitary amplitude, Lee and
his collaborators [5,31] use a reduction of the Bethe-Salpeter equation in which
both of the intermediate particles are on mass-shell, but they do not use this
prescription in the calculation of renormalization constants, loosing consistency.

Our model uses a relativistic wave equation in which the intermediate state
pion is on shell and the intermediate state nucleon is off shell. This is consistent
with the 7N model previously developed [7]. In our model, the same equations
are used to calculate both the scattering amplitude and the renormalized coupling
constants, insuring that the renormalization of the propagators and vertices is
carried out in a manner that is consistent with unitarity.

E. Gauge Invariance

It has been known since 1954, when Kroll and Ruderman (KR) {15] wrote
their well-known paper on pion photoproduction, that the momentum depen-
dence of the pseudovector tN N coupling requires introduction of an interaction
current (the famous Kroll-Ruderman term) in order to satisfy gauge invariance.
More recently, using minimal substitution, Ohta [32) and Naus, Koch, and Friar
(33] obtained a gauge invariant set of Born terms which included form factors.
Antwerpen and Afnan [34] extended this theory to the treatment of pion photo-
production with final state interactions, but have not obtained numerical results.
In their approach they require the dressed # NN vertex to be gauge invariant by
itself. The NBL model [5,31] also includes final state interactions, and satisfies
gauge invariance by restricting both of the intermediate particles to their mass
shell.

In this paper we apply the method originally introduced by Gross and Riska
[35). They show how the electromagnetic coupling to any two body system de-
scribed by a relativisitic two body equation (such as the Bethe-Salpeter equation
or the Gross equation [7,36]), will always conserve current provided the follow-
ing three conditions are met: (i) the electromagnetic currents for the interacting
off-shell nucleon and mesons satisfy the appropriate Ward-Takahashi (WT) iden-
tities; (i) the interacting incoming and outgoing two body system satisfy the
same two body relativistic equation (with the same interaction kernel); and (iii)
the exchange (or interaction) current is built up from the relativisitic kernel by
coupling the virtual photon to all possible places in the kernel. This method

works even in the presence of strong form factors for the off shell nucleon; in
this case it is only necessary to modify the structure of the off-shell YN N vertex
so that it satisfies the a WT identity with dressed propagators {as discussed in
Sec. 1V).

Using this method, it is possible to construct a gauge invariant theory even
when particles are off shell, but gauge invariance is achieved only through cancel-
lations among all of the diagrams in the theory. To prove gauge invariance {as is
done in Sec. II), we use the WT identities, the relativistic wave equation satisfied
by the 7N system, and must be careful to introduce interaction currents (in addi-
tion to the well-known KR interaction current) which arise from the momentum
dependence of the interaction kernel.

F. Resulis

The basic features of our #V scattering model are already well described in
Ref. [7], and the modifications of this original model are described in Sec. III.
New numerical results for pion nucleon , P, and D wave phase shifts and in-
elasticities are shown in Figs. 3-8 and the new parameters are given in Table I.
(The interested reader may compare these with the corresponding ‘Table I and
Figs. 7-13 in Ref. [7].)

Our fit to the pion-nucleon phase shifts and inelasticities are very good, with
a major improvement (over the original model [7]) in the Sy, channel (see Fig. 3)
which improves the scattering length. The new values of the scattering lengths
are:

pa_= 007
pay =—0.05 (1.9)

which is very close to the experimental results [37):

#a_lexpr = 0.085%0.01
pa.,,f.,,,-p; = —0.0240.02. (110)

Fig. 4 shows fits to the the P;; and P3; phase shifts. In the P;; channel the
zero appears at 101 MeV pion lab kinetic energy. ‘The fits to Pa3, Py, and D;s
channels shown in Fig. 5 and Fig. 6 are very good. Because of our approximation
for the inelastic channels, our fits to the Pyy and D3 inelasticity parameters are
not very good especially at the higher energy.

10
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Figure 3: Fits to the Siy and S3; phase shifts. The black dots are Figure 5: Fits to the P;3 and Pa3 phase shifts.
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Figure 6: Fit to the D3 phase shifis.
Figure 4: Fits to the Py; and P;; phase shifts.
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Figure 7: The Py, inelasticity parameter.
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Figure 8: The D3 inelasticity parameter.
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The 13 parameters given in boldface in Table I were adjusted during the fits.
"The table also includes several parameters which were determined by the fit or
fixed by consistency requirements. All of these these parameters, except for the
new inelasticity parameters g{ g,and g4 (where B = {N*, D}, see Sec. IHI), have
been discussed in detail in Ref. [7). We choose 955 = 0. The inelasticities of the
N* and Dy3 are described approximately by introducing a ¢" N channel, where
o* is a (fictitious) scalar particle with a mass equal to two pion masses, or 278
MeV. The mass of the o* was chosen so that the ¢* N threshold would coincide
exactly with the 7x N threshold, which seems to be critical to a good description
of the inelasticity.

The numerical results for the multipole amplitudes for pion photoproduction
from a proton are shown in Figs. 9-21 and and the new parameters which describe
the coupling of the photon to the nucleon (and meson) resonances are given
in Table II. The experimental results shown in the figures come from the VPI
interactive SAID program of Arndt and Roper {38]. The amplitudes are given in
units of (fm)x10~3. The precise definitions of the parameters shown in Table 11
are given in Sec. IV; those in boldface were adjusted during the fit.

The parameters g, and g,5 (where B = {N* A, D}) describe the YN B cou-
plings (there are two independent forms for each coupling, see Sec. 1V), the prod-
ucts guxygunN (Where v = {p,w}) are the strengths of the pry and wn couplings
(the fit can determine the product of these factors only), and the funn/gunn
are the ratio of the tensor (f,nn) to vector (g,nn) strengths of the pNN and
wNN couplings. The fonn/9,nn value given in Table II was taken from the
NN Model 1A of Ref. [36], while the foyn /9unn was adjusted to improve the
fit.

Because of our choice of spin 3/2 propagator and our approximation scheme
which sets the crossed A and Dig pole terms to be zero, the A and the Dy3 only
contribute to the j = 3/2 channels. It is therefore convenient to describe our fits
to the j = 1/2 and j = 3/2 channels separately.

We begin with the j = 1/2 channels, shown in Figs. 9-12. These channels
are driven by the nucleon and N* poles and crossed poles, and the 7, w and
p exchange terms (see Sec. IV for details). These driving terms depend on five
adjustable paramenters: two YNN* couplings, denoted by g, ,. and Gan-, the
#7y and wmy couplings multiplied by the pNN and wNN couplings, denoted
by goxy8snn and gurygunn and the w anomalous magnetic moment coupling
£y = fuNN[dunn. To show how the total result is built up from individual con-
tributions, the curves in the figures show the result when the kernel (i) includes
only the direct nucleon pole term, the crossed nucleon pole, the pion exchange
pole, and all the interaction currents associated with the nucleon (the dotted

14
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Figure 9: Fit to the real part of Eg+(1/2) amplitude. The individ-
ual contributions are discussed in the text.

Re Ey(312)
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E‘Ylah (MGV)

Figure 10: Fit to the real part of the E4+(3/2) amplitude. The
p exchange pole does not contribute to this channel, and the N*
gives a small contribution (the dashed line nearly overlaps the solid
line).
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Figure 11: Fit to the real part of M;-(1/2) amplitude.
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Figure 12: Fit to the real part of the M;-(3/2) amplitude. The
p exchange pole does not contribute to this channel, and the N*
gives a very small contribution (the dashed line overlaps the solid
line).
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60 .
line), (ii) the terms in (i) plus the w exchange pole (the dashed line), (ii1) the L Re M+(3/2)
terms in (ii) plus p exchange pole (the dotted line, with wider space between !
dots), and finally (iv) the total result, which includes the terms in (iii) plus the
N* contributions (the solid line). Since all contributions add non-linearly, it is
difficult to extract the separate contributions from the figures.

Ouz fits to both the real and imaginary parts of the j = 1 /2 multipole ampli-
tudes are very good. In the S;; N channel (Fig. 9) there is a smali peak near
730 MeV that we can not describe. This peak is associated with 7 production,
not included in our model. This 5 production also contributes to the Sa; channel
(Fig. 10) at high energy.

Before we discuss the fits to the j = 3/2 channels, we wish to point out that s
the Eo+(1/2) and M,-(1/2) amplitudes, shown in Figs. 9 and 11, are particu- qob— v,

larly sensitive to all of the individual contributions. In contrast, the p exchange 200 300 400 500 600 700
18 isoscalar and does not contribute to the 7 = 3/2 amplitudes (the Eo+(3/2) E'Yt s (MeV)
Al

and M,-(3/2), shown in Figs. 10 and 12), and the Roper also gives only a very
small contribution to these I = 3/2 channels (the dashed line overlaps, or almost.
overlaps, the solid line). The w and p exchange coniribution are very impor-
tant to a description of the two I = 1/2 amplitudes. The Roper is also very
significant, especially in the M;-(1/2) amplitude, which cannot be fit without
it. The M,-(3/2) amplitude (Fig. 12) depends very much on the omega, and
could not be fit without varying the (funn/gwnn) coupling. The small value of
(funn/9unn) from one the boson exchange models [36] did not work.

The j = 3/2 channels, shown in Figs. 13-16, are driven by the direct spin
3/2 resonance poles (from the A and Di3), the crossed N and N* pole diagrams, 2 i "
and the 7, p, and w exchange diagrams. As before, the p exchange pole does i Re E;+(3/2)
not contribute to the I = 3/2 amplitudes, so the contributions shown in Figs. 13
and 14 include (i) contributions from the nucleon and pion only (dotted line as
above), (ii) terms in (i) plus the omega exchange pole {line with short dashes,
as above), (iii) the terms in (ii) plus the N* contributions (the line with longer
dashes) and (iv) the total result, including the A pole terms (solid line). For the
I = 1/2 amplitudes, the widely spaced dotted line includes terms in (ii} above
plus the p exchange (as in the j = 1/2 cases), the line with longer dashes adds
the N* contributions, and the solid line is the total, including the Dya. All of the
parameters for the crossed and exchange diagrams were already determined by
the 7 = 1/2 fit. The direct A pole, which contributes only to the Py3 final state

Figure 13: Fit to the real part of M,+(3/2) amplitude. The indi-
vidual contributions are discussed in the text. The N* contribution
is very small, and the p does not contribute.

{Figs. 13 and 14), requires two new parameters (the couplings g1 and g25), and S
the direct I35 pole, which contributes only to the D5 final state (Figs. 15 and 200 300 400 500 600 700
16), requires two more (the couplings g1p and gap). The values of the YN A cou- E’Ylab (MeV)

plings which we obtain are within range of other calculations (39] which use . i .
Figure 14: Fit to the real part of the FE1+(3/2) amplitude. See the

caption to Fig. 13.
17 18
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Figure 15: Fit to the real part of E,_(1/2) amplitude. The individ-
ual contributions are discussed in the text. The N* contribution is
very small (as indicated by the overlap of the long-dashed line and

200 300 400 500 600 700
E’Ylab (MeV)

the widely spaced dotted line).
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Re M,(1/2)
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EV (MeV)

Figure 16: Fit to the real part of the M,-(1/2) amplitude. See the
caption to Fig. 15.

19

the Rarita Schwinger propagator to describe the spin 3/2 resonances.

All of the j = 3/2 amplitudes are fit reasonably well by the model. The
contribution of the N* 1o all of these amplitudes is very small {(as indicated by
the near overlap of the lines with short and long dashes in Figs. 13 and 14 and
the lines with widely spaced dots and long dashes in Figs. 15 and 16). Note that
the rho exchange pole plays an important role in the Ey_(1/2) and My_(1/2)
amplitudes (Figs. 15 and 16).

From the results shown in Figs. 13 and 14 we calculated the ratio of Fy4(3/2)
and M)+(3/2) at the peak of the A resonance, and found that the value from
only the dressed A contribution is about —1.46%.

Finally, Figs. 17 — 20 show the comparison of our calculation (solid lines) to
the VPI analysis [38] (dashed lines). The black dots and open triangles are the
real and imaginary parts of the amplitudes, respectively. The agreement between
the two calculations is good.

G. Form Factors

Some form factors are needed to insure that the solutions of the integral equa-
tion exist, or alternatively, to cut off the integrals over the 7N and (the inelastic)
o* N loops which appear in the solution. These form factors cannot depend on
the pion mass, as is usually done in pion exchange models, because the pion
is on-shell. Anticipating the extension of this model to the description of the
electro-production of pions, where a gauge invariant treatment of electromag-
netic interactions is possible following the procedure introduced in Ref. [35], we
choose to make the form factors depend only on the off-shell nucleon mass, By
extension, and to improve the fits, we also introduce form factors for the baryon
resonances. These form factors are identified with the baryon itself; each baryon
has a universal form factor which will be used for that baryon, wherever it ap-
pears in the calculation. We also require all form factors to be zero in the space
like region (when p? < ().

The specific form of the bayron form factors used in this paper, which are
different from those used in Ref. [7], is

(A — m})? r P (1 + (u? + mb)?)
—mp)? + (mf —p*2| | m§ (u + (1 + p%)?)

Io(p?) = [(A% ]0@2), (1.11)

where mp = m for B = {N,A, D13}, mp = m* (the Roper mass) for the Roper,
the form factor masses Ap were allowed to vary during the fit, and the theta
function is introduced to insure that this form factor is zero for p? < 0. Note
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Figure 17: Comparison of our Eg+(1/2) and {3/2) to SAID analy-
sis. See the discussion in the text.

21

_ M, (1/2)

200 300 400 500 600 700
EV e (MeV)

(a)

M, (3/2)

i

200 300 400 500 600 700
E’Ylnb (MeV)
(b)

Figure 18: Comparison of our M;-(1/2) and (3/2) amplitudes.

22



Er(312)

-6 1 1 1 . 1 L 1 . 1 . L .
200 300 400 500 600 700
ET (MeV)
(a)
60T M+(3/2)

40
20
0 T s . SR
=20
200 300 400 500 600 700
E", MeV)
(b)

Figure 19: Comparison of our Ey+(3/2) and M;+(3/2) amplitudes.
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Figure 20: Comparison of our E3-(1/2) and M,-(1/2) amplitudes.
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pion loop momentumn.
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that the maximum value of the first factor is unity at p? = mf;, and that this
term peaks at p? = m? for the nucleon, A, and Dy3 form faciors, while it peaks
at p? = m*? for the N* form factor. Unfortunately, our results are sensitive to
the form factors, which are purely phenomenological.

When the form factors accompany the intermediate baryon in the direct
baryon pole terms, the virtual mass (squared) is simply

Pl =m? 4 p? 4 2Ty + 1) (1.12)

and the four baryon form factors are plotted versus Tjap, in Fig. 21. When the nu-
cleon form factor accompanies a virtual nucleon in a TN loop, its mass (squared)
is

PP=W24p? —2Wu(k) | (1.13)

where k is the magnitude of the pion three-momentum in the loop, and w(k) =
V#? + k2. The nucleon form factor is plotted versus k for a fixed W = m +pin
Fig. 22. We emphasize that the seme nucleon form factor is shown in both figures;
only the variable on which it depends has been changed. Note that (because of
the theta function) the nucleon form factor is zero beyond k = 525 MeV, cutting
off the loop integral at this momentum. [However, a more gentle cutoff, such as
the ones used in Ref. [7], does not alter the results significantly.]

H. Conclusions

The following conclusions can be drawn from the present work:

(i) A relativistic resonance model of pion-photoproduction, fully consistent
with the 7N scattering model which defines the final state interactions, has been
found to give a good description of the process up to 750 photon laboratory
energy. The model is covariant, satisfies unitarity up to first order in the electric
charge ¢, and is gauge invariant to all orders. The simplicity and consistency of
the two models means that they can be used as a basis for a treatment of the
coupled NN « xNN system, and its electromagnetic extension to YNN and
vTNN.

(i1) The dressed A contribution gives a ratio of E2/M1 = —1.46% at the
A pole, implying that the A is not purely an S state, but contains a D state
admixture. This result shows that the tensor interaction between quarks should
not be neglected.

(iii) The threshold value of the electric dipole moment for 7o photoproduction
from protons is Egy = —1.34 x 10~3/y, which is in agreement with the recent
value predicted by chiral perturbation theory.
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1I. GENERAL THEORY

In this section the relativistic equation for the pion-photoproduction scatter-
Ing matrix is presented, and we show that the theory is covariant, gauge invariant
and satisfies unitarity.

A. Integral Equations

The Bethe-Salpeter equation for pion-photoproduction can be written in two
equivalent ways. Keeping the terms lowest order in ¢ only, and supressing all the
Dirac and isospin indicies gives

. [ A4 , "
Mey(K',q, P)= Voy(kK',q, P) + i WV,,(A: Kk PYG(E", P)M,., (K", q, P)
! - d‘!k” 7 it " "
= ,7(k,q,P)+1 (2—”)4-Mﬂr(k ,k ,P)G(k :P)VIT(k 4, P) ]
(2.1)

where Vey(k',q, P) and Vi, (k', £, P) are the driving terms for the y7 and 7x
sectors, respectively, and G{(k", P) is the two-body N propagator. The four-
momenta of the incoming, outgoing, and intermediate nucleon are p, p' and P,
of the outgoing, and intermediate pion are k', and k", and of the incoming photon
is ¢, 50 that P = p+ ¢ =p + & = p" + k" is the total four-momentum. The
equivalence of the two forms of Eq. (2.1) follows from their Born series, which is
identical. To see this, it is necessary to use the equations for the 7N scattering
amplitutle, which are

4 11
Min(k' &, P)= Vex (K, k, P) + i %Vn(k’, k", P)G(E", P)Mn (K", k, P)
4kn
— ' 3 I H H "
= Ve (K k, P) 4 Gyi Mra (K ¥, PYG(K, PYVar (K", £, P).

(2.2)

In Ref. [7] we have shown that pion nucleon scattering is well described by a
relativistic equation obtained from Eq. (2.2) by putting the intermediate pion on
mass-shell. To be consistent with this description of #N scattering, we also put
the intermediate pion on the mass-shell in the yN Egs. (2.1). [The only place
that the pion will be off-shell is in one of the pion pole driving terms, which
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is needed to satisfy gauge invariance, as discussed below.] If the pion is put

on-shell, the Eq. (2.1) becomes
M"’T(k’! 1, P) = V""'Y(k’l q, P)
dalc”

- (21!')32!.0],"
= TI'T(k’: q;P)

d3k” B )
_j -(2‘.“')32&)1-" Mar:lr(k",k s P)SN(p ’)VF‘Y(k”,q; P) . (23)

Vir (kls k”; P)SN(p”)Mry(k”; q, P)

where wyn = /% + k' is the on-shell pion energy, and

SN(p”) = ""“"-'—m - ;” e (24)

is the nucleon propagator, and g and m are the pion and the nucleon masses.

The equations are regularized by adding a form factor, Fn(p?), to damp the
high momentum behavior of the off-shell nucleon of momentum p. The Egs. (2.3)
include these form factors in the interaction kernel V. Alternatively, it is some-
times convenient (particularly in our discussion of gauge invariance below) to
move these form factors from the kernel to the propagator. To this end we can
introduce reduced amplitudes and damped propagators as follows:

V(K. k, P)= fu[(P — ¥)) V(' k, P) fu[(P - k)]
M(K', k, P)= fn[(P — &'V M(K, k, P) fN[(P — k)?)
Sn(p")= fa (") Sn(p") . (2.5)

The symbol M will usually denote the reduced amplitede M (the amplitude M
with the form factors removed) and § the damped propagator with the (square of
the) nucleon form factor added. It is easy to verify that the reduced amplitudes
satisfy the same equations, but with damped propagators substituted for “bare”
propagators.

We will have ocassion to use the fact that the pion nucleon scattering matrix
Myx(k', k, P) can be written in the following form (see Ref. [7]):

Mar(k', &, P) = Me xe(K'\k, P)+ ) _Tg(k, P)Gp(P)Tg(k, P) (2.6)
B

where the sum is over baryons B in the set {N,N*,A, Dys}, M., (k' k,P)is
the infinite sum of iterated contact diagrams, I'g(k, P) is the dressed vertex for
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baryon B, and Gg(P) is the dressed baryon propagator. {The definition of the
Dirac conjugate, T'g, will be given in the next subsection; note that it, and the
notation used in Eq. (2.6), differs from that given in Ref. [7). For a complete
review of our notational conventions, see Appendix A.)

The integral equations (2.3) are manifestly covariant. This is guaranteed by

the covariance of the volume integration,
@k 4 2_ 12
2w—-k_/d ko (u ~ k7). 2.7

Furthermore, these equations automatically give a solution which satisfies uni-
tarity to order e (the Watson theorem), as we show in the next subsection.

B. Unitarity

The proof of unitarity is very similar to the one given in Ref. [36] for NN
scattering. First, we write Eq. (2.3), and a similar one for 7 + N — 7+ N (pion
photoabsorbtion) in the following compact form

M,-,«: V;—-y _/Vrr SMrr (a)
Moyr=Vor — /V'rw S My (b) (2.8)

where M, M, and M, are the scattering matrices for photoproduction, pho-
toabsorption, and pion nucleon scattering, and Va, Vi, and Vi, are the driving
terms (kernels) for photoproduction, photoabsorption, and 7N scattering. The
Dirac conjugate of the photoproduction kernel is the kernel for photoabsorption,
but the 7N kernel is self conjugate:

thy(ka U8 P) Yo= V‘rl(q' k, P)
VI (K, k, P)yo= Vau(k, k', P) . (2.9)

V,--,(k, T, P) =70
Vrt(k’: k, P) =7

Taking the Dirac conjugate of Eq. (2.8b), and using Eq. (2.9), we obtain
Moz =Voy = [ Maa 5V, . (2.10)

Using Eq. (2.8a) to replace the Vay driving term under the integral in this equa-

tion gives the following nonlinear equation for M.,
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Mye = Vy, ﬁ,,?M,.,—[fA_J},EV”SM,,. (2.11)

A second nonlinear equation can be obtained from Eq. (2.8a) by using the Dirac
conjugate of the #N equation

Myr=Ver— [ Mex S Vin (2.12)
to replace the Vi, driving term under the integral
Myy = Vipy — /H,, S My, —]fﬂ,,jv" S My, . (2.13)
Subtracting Eq. (2.11) from Eq. (2.13) gives the elastic unitarity condition
Mpy — My, = —/H" (S—S)M,, . (2.14)

Using time reversal invariance, the Dirac conjugate ]\7.,, can be related to the
complex conjugate of M,.,.

In each eigen-channel, the elastic unitarity condition (2.14) automatically
implies that the pion photoproduction amplitude has the same phase as the # N
scattering amplitude, which is a statement of the Watson theorem [9]. However,
above the inelastic threshold, i.e. when the nx N intermediate states become
physical, the driving terms in our equation become compiex, the elastic unttarity
condition no longer holds, and the Watson theorem no longer applies.

C. Intreduction to the model

In this section we prepare the way for a demonstration of gauge invariance
by giving a brief introduction to our model of pion-photoproduction. A detailed
discussion of the structure of the couplings and the definition of parameters will
be deferred to Sec. II1. Here we will limit the discussion to those points essential
to the proof of gauge invariance.

Our amplitude for pion-photoproduction is given by the sum of the Born
diagrams shown in Fig. 1 and their final state interactions, shown in Fig. 2. The
Born diagrams 1(a), (b), (€2) and (e3) include (in principle) contributions from
all of the resonances B, but the contributions of the A and Dy; to diagram
1{(b) are zero in the approximation we employ. Furthermore, the YNN*, yNA,
YN Dy3, pry, and wry couplings are all separately gauge invariant, and hence
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the contributions of the baryon resonances to the diagrams (a) and (), and of
the p and w to diagram (c}, can be ignored in the proof of gauge invariance,
and will not be discussed further here. Diagrams 1(e3) and (f) are interaction
currents which arise because of the momentum dependence of the elementary 7N
contact interaction and the *N N , TNA, and aN Dy, couplings. In our model
the aNN* coupling does not depend on the momentum, and hence the Roper
makes no contribution to diagram (e3).

Note that dressed vertices are needed in diagrams (b), (¢}, (e), and (f) because
final state interactions cannot describe any wN interactions which take place
before the photon is absorbed. Interactions which take place after the photon
is absorbed are part of the final state interactions, and hence diagram (a) must
contain only the bare vertex in order to avoid double counting.

The interaction kernel obtained from the Born diagrams in Fig. 1 has the
form

Viy (K, g, P) = —ie e, JR (', g, P), (2.15)

where ¢, is the polarization vector of the incoming photon, i is the isospin of the
outgoing pion, and we remove the overall factor of e so that all currents will not
include this factor. The reduced current J** for the diagrams (a)-(d), including
nucleons only, is

(7)., %0, P) = 5 Ewolk', P)SW(P)34(P.)
NP\ P~ K)Sn(p— K)En (K, p)
KK~ )1 AR - F v —g,0) + T (0), (2.16)

where T (¥, p) is the reduced dressed TNN vertex for an outgoing pion with
four-momentum &', T yo(#’, P) is the reduced bare atNN vertex, A is the damped
pion propagator, jh (¢, p) and Fin(k, k) are the reduced YN N and yrx current
operators, and J}% (g) is the reduced Kroll-Ruderman term [Fig. 1(d)]. We adopt
a convention where the single particle currents, 7o and j%#  and the propagators
include the overall factor of “” which multiplies all Feynman matrix elements
(the Rule 0 of Ref. {40]), while the vertex functions do not (see Appendix A). The
additional driving terms shown in diagrams (e) and (f) and the specific forms
of the factors introduced in Eq. (2.16) will be given as they are needed in the
following discussion.

The bare, reduced 7NN vertex, I*, is a superposition of pseudoscalar and
pseudovector couplings

Tyno(k', P) = g (,x - %ﬂi ﬁ’) 5 , (2.17)
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where g is the xN N coupling constant and A is the mixing parameter. Note that
the vertex does not depend on P. The dressed vertex, which includes all of the
7N contact interactions, satisfies

Ty (k,p) = Trno(k',p) — f dk” M} 2K, &, p)Sn(p - KT no(E”, p)
= 'wo(k',p) — / dE" V2K K, p)Sn(p — FOEn(E”,p),  (2.18)

where V.2 ig the reduced 7N contact interaction (in the isospin 1 /2 channel),
and MJ'? is the reduced iteration of these contact interactions to all orders (see

Ref. [7]), and
" d3 I
/dk _/2wku (27!')3 '

In the third term of Eq. (2.16), the vertex In(k - 4, p) describes the coupling of
a nucleon to an off-shell pion, which is, strictly speaking, an amplitude outside
of the framework of our model. However, since the reduced contact interactions
V. do not depend on the pion momenta (see the next section) and the reduced
bare vertex depends on pion the momentum only through the (1 — A)f term in
Eq. (2.17), the reduced off shell vertex is casily obtained by simply using the
(correct) off-shell pion four-momentum in the formula for the on-shell vertex.

The full result for pion photoproduction, including final state interactions,
will be written

(2.19)

M, (K,q, P) = ~iec, (K, q, P) (2.20)

where the current J* is a sum of the Born terms and integrals over the 7N
scattering amplitude [the diagrams shown in Fig. 2(a)-(f)]

JH(K'\q, P)= J*(k,q, P)
—]dk”ﬂxr(k’,k”, P)S‘N(P”) j'.F(’C”,q,P) . (221)

Note that this equation is merely a statement of Eq. (2.3).
We are now ready to prove that the expression (2.21) is gauge invariant.

D. Gauge invariance

Using the notation and the relativistic equations discussed above, we will
now show that the photoproduction amplitude obtained from the driving terms
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shown in Fig. 1 is gauge invariant. As mentioned in the previous section, the
YNN*, YyNA, YN Dya, pry, and wry couplings are separately gauge invariant,
so contributions to diagrams 1(a)—(c) from these resonances will be ignored here.
The proof will follow the method introduced by Gross and Riska [35).

The reduced single nucleon current operator, denoted by ;f:, above, and the
reduced single pion current operator, denoted by ji# above, have the following
structure

jf\';(p',p) = 1 7ho(P', P)
IRk k) = —de;iagto (K, k), (2.22)

where p and p' are the four momenta of the incoming and outgoing (off-shell)
nucleon, 7, = L(1 4 73) is charge operator for the nucteon (we ignore the nucleon
anomalous magnetic moment term here because it is separately gauge invariant,
but it is included in the full calculation), and k, J and ¥, i are the four momenta
and isospin of the incoming and outgoing pion, respectively.

‘The proof begins with the fact that the current operators }1’\‘10 and 5',‘,‘0, can be
construcled so as to satisfy Ward-Takahashi (WT) identities involving the damped
propagators. These WT identities are (recall that the charge has been removed
so that the current is normalized to jiy, ~ v#)

Wito®p) = [S51(0) - 35| (2:23)
and
wito(,K) = [A71() - A (k1) . (2.24)

The damped nucleon propagator S'N(p) and the damped pion propagator A,(k)
are

_ 22
Svi) = L~ g onswe (225)
and

AE) L panau, (2.26)

A:r(k) = ’12 _ k2 e

where fn(p®) and f,(k?) are phenomenological form factors. The nucleon form
factor, fy(p?), has already been discussed; the pion form factor, fy (k?), would
occur only in diagrams 1(c), (e1) and (€2), and their final state interaction con-
tributions, but we shall see later that it cancells and never enters into the final
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result. Note the these form factors are unity when the particles are on their
mass-shell: fy(m?) =1 = f,(u?).

Now compute the four-divergence of the nucleon pole contributions to the
Born terms 1(a)~(d), given in Eq. (2.16) above. Allowing for the fact that the
final nucleon will be off shell when the Born terms are used to calculate the
final state interactions, and that the form factors are unity when the particle is
on-shell, the Ward-Takahashi identitics give

% (f“‘)a_d = rpLwo(k, PYSn(P) (0 - 55\ (P))
w7 (S3' 0= ¥) = S310) Sn (o — K)n (k' p)
R ([r‘(k' — )~ 0) A(K - Q)T w(k ~ 4,p) + gui ik ()
= ~nrCno(k', P) + r,ml (¥, p)

—ifijafij ¥ -—q9.p+ Qyj:;’:‘v(fﬂ
~T TSy (0')Sn(p— K)Fn (K, p) . (2.27)

Using the relativistic wave equation (2.18) for the dressed vertex permits us to
write

Qu (ji")a_d =— [Tgrprg(k’, Py~ Tpﬁf‘No(k’;P)
+i€.‘j31’jf‘Nu(k' ~q,p)— Qyj;“N(Q)]
1 /dk’!ﬁllz(k', k”,p) S'N(P— k”) f‘N(k”,p)
ticary [ KT ~ g, K, 5) Sulp ~ ") En (1", p)
~ 7Sy (YSn (p — K)EN (K, p) . (2.28)

Next, we recall that f‘No(k’ , P) does not depend on P, and observe that

= - 1-2X
Ino(k —¢,p) = Tno(K', p) + LHZmJ 97s . {2.29)
Hence, since ny7, — TpTi = —i€;5375, we see that the first four terms in square
brackets in Eq. (2.28) will be zero provided
= . I—A
audpnle) = 16513Tj'('W)‘ g7 (2.30)
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This constraint will be satisfied by the Kroll-Ruderman term given in Sec. V.
Using this constraint, and the fact that the reduced =N contact interaction,
I}.:(k’, k",p) = V.(p), depends only on the total momentum P, the divergence of
the diagrams in Fig. 1{a)—(d) becomes finally

Iu (f"")a_d St / dk"VM*(p) Sy (p — k") T (K", p)

~nTiSy ()N (p — )TN (K, p) . (2.31)

Now we add in the final state interactions from diagrams 2(a)(d). It is
convenient at this point to consider the final state interactions in the isospin
I = 1/2 and 3/2 siates separately. These states can be separated out by the
1sospin 1/2 and 3/2 projection operators, which are

1))a= 3%
I:;Jn: 6,'1- - %T,’T}' s (232)

where i and j are the isospins of the outgoing and incoming pions, respectively.
Hence the first term in Eq. (2.31) is pure I = 1/2

2,7 = [8; - tnm) i = 0 (2.33)

and does not contribute to the discussion of [ = 3/2 gauge invariance. The
second term in Eq. (2.31) contributes to both isospin channels:

I;’,zrpqz %'r.- (1 — %1’3)
1:327'?"3': I3, (2.34)

but is zero for the Born terms because the final nucleon is on shell. Hence the
full contribution of the I = 3/2 final states to the photoproduction amplitude,
Eq. (2.21), from the terms driven by the diagrams (a)-(d) is

T (33';2) = f dk" MK k", PYSn(P — K")S3} (P ~ k)
xSn(p — ¥)Tn (K", p)
- f k"MK K, P)Sn(p — K)Tn (K", p) (2.35)
where the isospin factors can be dropped after Eq. (2.34) has been used. If the

amplitude, as presently constructed, were gauge invariant, Eq. (2.35) would give
zero. We must add several extra terms in order to get a gauge invariant result.
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These extra terms are driven by the diagrams shown in Fig. H{el)-(e3). The
pion loop in diagrams (e1) and (e2) contributes an isospin factor —i€j¢37¢, where
J 18 the isospin of the pion after its interaction with the photon. This factor can
be decomposed into isospin 1/2 and 3/2 parts

~itjeate = ~ T35, + 2015, . (2.36)
For diagram (e3}, we need the isospin structure of the y+ 7 + N — A four point
currenf, which will be shown in Sec. IVC to have the form

T g, P = ~ic;aT] joA(q, P), (2.37)

where T; is the isospin 3/2 — 1/2 transition operator (and Tt the 1/2 — 3/2
transition operator) with the property

LT} = (8 - i) =13, (2.38)

and }}‘A(q, P) is the reduced,isospin 3/2 interaction current, with ¢ the momen-
tum of the incoming photon, u its polarization index, P the momentum of the
outgoing A, and the four vector index of the outgoing A, v, suppressed. (Note
that the definitioin and normalization of T used in this paper differs from that
used in [7].) When the four point delta current is inserted into the pion loop in
Fig. 1{e3)}, the isospin factor becomes

icerTny = 1 (28 - 228) = 7 (239)

This factor of Tg will eventually be combined with the transition operator 1}
attached to the final A — N vertex to give a factor of 1532, which i8 common

to all of the three diagrams, and will be droped. Hence the I = 3/2 contribution
from these diagrams is

() = f dk" [V313 (K, K + g, P) + T ao(k', P)G ao(P)Tao(” + ¢, P)|
xA(K" + ) Joo(K” + ¢, K) S (p ~ k)T (k" p)
- / dk"Tao(K', P)Gao(P)jfa (e, P)Sn(p~ ¥)En(K",p),  (2.40)

where T'ag(k’, P) is the bare but reduced (t.e. the nucleon and Delta form factors
have been removed) A — N7 vertex function and Gao(P) is the damped (but
undressed by the higher order 7N interactions) A propagator. All four vector
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indices of the propagating Delta have been suppressed in Eq. (2.40), and all
isospin operators have been removed, as discussed above. Using the WT identity
to take the four-divergence of (2.40) gives

s (%), = - [ " [730P) + Faolk', PYCao(P)
x {Fao®” + 4, P) + u3tala, B)}] Swlp— ¥En (K", p), (241)

where we used the fact that V, depends on P only. in Sec. IV we will show that
the interaction current satisfies the following relation

QME}‘A(Q: P)y= ~Tao(k” +q, P)+ Taolk”, P). (2.42)

Using this constraint, Eq. (2.41) becomes
0 (Jhys), = [TAE R P~ ). (2a3)

where
VAP (K &, P) = V(K k", P) + Tao(K, PYGao(P)Tac(k”, P)  (2.44)

i the full kernel for *N scattering in the I = 3/2 channel.
Including the final state interactions, the full contributions generated by dia-

grams 1(e) are

o (15:), - [ a
[f’,;",{z(k’, k', P)— f dk M2k, k, P)Sn(P — )V 2(k, k", P)]
xSn(p — k"IN (K", p)
=~ [ @k B K PG~ TN, ), (2.45)

where, in the second step, we used the wave equation for M,, to reduce the
expression. Note that the contributions from diagrams (e), Eq. (2.45), cancel the
contributions from diagrams (a)-(d), Eq. (2.35), proving that the I=3/2 amplitude
15 gauge invariani.

We now turn to a discussion of the I = 1/2 amplitude. The proof for this
channel is similar to the one given above, but we must add the additional con-
tributions from Eq. (2.31), and also be careful to consider the different isospin

37

operators which can contribute to this channel. Using the results from Egs. (2.31),
(2.34), (2.36), and gencralizing the argument leading to (2.45), we get

Qu (Jfﬁ)w = -7t ] dk" V2 %(p) Sn(p — k) Tn (K", p)
ity f ANk b, PYSn(P — k)
x ] dE"V*(p) Sn(p — k") Tn (K", p)
+37 (1 - §7s) f k" My (K K, P)Sn(p — k")Ew (K", p)
+inm / Ak MK K, P)Sn(p — k") Tn(K",p),  (2.46)

where the first term is the contribution of the Born terms from diagrams (a)-(d),
the next two terms are the final state interactions generated by these Born terms,
and the last term is the contribution from diagrams 1(e) and 2(¢). To obtain the
last term in the form given above, we followed steps similar to those leading to
Eq. (2.45), eliminating the isospin 1/2 interaction currents associated with the
diagrams 1(e3) and 2(e2) using a generalization of the constraint (2.42)

93150, P) = —Fao(k" + g, P) + Fro(k”, P), (2.47)

where B = {N, Dy3} (the Roper has no interaction current because, by construc-
tion, its coupling is independent of the pion momentum). In Sec. IV we will show
that these constraints are satisfied.

Adding the last two terms in Eq. (2.46), and replacing M by its integral
equation, M — V — [ MSV, allows us to rewrite Eq. (2.46) in the following
form:

0 (7ih) = f d” [V2/%(p) - VYK ", P)| Sw(p — k) (K", p)
+Ty ] deBIH2(K K, P)Sn(P - k)
[ db [72025) — V3420, PY] Suo - k1) Ew(k", ).
(2.48)

Next, we recall from Eq. (2.44) that V,, is the sum of a connected part and a
resonance part. The contributions from the resonance part to Eq. (2.48) involves
the following integrals
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Ig = / dk"FBu(k",P)EN(p — kK )Tn (k" p), (2.49)

where B = {N, N*, D}. However, for different reasons, these integrals (2.49) are
all zero. The integral describing the N - Dy3 transition is zero because the
nucleon and D3 are orthogonal in our model, and the transition to the Roper is
zero because the physical nucleon is defined by the condition that it be orthogonal
to the Roper resonance at the nucleon pole (see the discussion in Ref. [7]). Finally,
using the fact the f‘No(k” , P) does not depend on P, the N — N contribution
can be written

In = / dk"Tno(k”, p)Sn(p — YT (K" p). (2.50)

This is just is the value of the nucleon self energy at the nucleon pole, and, as
discussed in Ref. {7], we adjust the parameters of the N driving terms so as
to insure that this quantity is zero. This constraint, which we call the stability
condition, is an approximate way to include higher order interactions and ensures
that the model is stable under small changes in the physical input. Because of
these conditions, Eq. (2.48) reduces to

w (i), = = [ ah" [747(0) - V22(P)| Snp — K Em(",
+riry [ A8, PSP~ k) [ ake [72030) - 7302p)|
xSn(p— k") Pn (", p). (2.51)
This term is canceled by the second type of interaction current, illustrated in
Figs. 1(f) and 2(f). This interaction current contributes the following terms to

the amplitude
(9ifs), = ~ni [ 38, (e, PYM (o~ E)Ew (8", p)
+TiTyi / dk MK, k, P)Sn(P — k)

x f dk"JE | (0, P)Sn(p - k) (K, 3), (2.52)
where the first term is the Born term shown in Fig. 1(f) and the second is the

final state interaction shown in Fig. 2(f), and the current Je, /2 18 defined as in
Eq. (2.15). Later we will show that this term satisfies the following constraint
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—iquty (0. P) = VAP - q) - VMY (P), (2.53)

which is precisely what is needed to cancell the contributions from Eq. (2.51).
Hence, the gauge invariance of the I = 1/2 channels has been proven.

We have proved that our theory involving the driving terms shown in Fig. 1
and the final state 7V interactions shown in Fig. 2 is gauge invariant provided

(1) the interaction currents satisfy the constraints (2.42), (2.47), and (2.53),

(11) the YNN*, yNA, yN Dy3, pry, and wry couplings are all explicitly gauge
invariant, and

(iii} the reduced one body currents satisfy the WT identities (2.23) and (2.24).

These results will be demonstrated in the following sections.
We turn now to a detailed description of the modified /N scattering model.

IIl. PION NUCLEON SCATTERING

In this section-we describe the modifications to our =N scattering model
previously published {7]. These modifications were made in order to: (i) improve
the threshold behaviour (scattering lengths), (it) more faithfully approximate the
physics of the 72N channels which account for the inelasticity, (iii) reduce the
complexity of the 7y interaction currents by minimizing the energy dependence of
the 7N interaction kernel which generates these interaction currents, (iv) remove
the pole in the spin 3/2 propagator which occurrs at P2 = 0, and (v) introduce
a form factor that eliminates all contributions from the space-like (P* < 0) cut
arising from the factor vP2. While the P? < 0 region is very far from the
physical region (P? > (m + u)?) and plays no role in physical 7V scattering,
it does contribute when the 7N nucleon interaction is imbedded in the #N N
system, and we therefore decided to eliminate it now. Our discussion here will
focus only on the changes being made in the original model; for a complete
discussion the reader is referred to Ref. [7].

A. Relativistic contact terms

As in the original model, the relativistic contact terms come from the crossed
nucleon pole (or nucleon exchange term), the effective p and o type terms required
by chiral symmetry, and an additional p exchange term unconstrained by chiral
syminetry.
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"The reduced crossed nucleon pole diagram (expressed as a function of the pion
momenta instead of the nucleon momenta, as was done in Ref. [7]) is

. 2 _ 12
Ven (k' k. P) = Cg'riry fy(u) ()‘2’"1 + [mzl— u (14m;\) ] Q) 31)

where @ = J(F' + F) and u = (P — k)%, The simplest way to approximate
the energy dependence implicit in § is to replace it by its value when all of the
exlernal particles are on mass-shell, which is

R=P-m. (3:2)

We will use this approximation for the last term in Eq. (3.1), where ) is muitiplied
by a constant, but this approximation, when used with the pole term 1/(u—m?),
gives a very inaccurate result when extrapolated to the nucleon poleat W=m
[where, in the rest frame, P = (W,0)). In order to have a better extrapolation
to W = m, which is very important for the calculation of the stability condition,
and also to get the right threshold behavior, we approximate the pole term [the
second term in Eq. (3.1)] as follows:

g P
m? —u " /P - ) 3.3)

This approximation is simpler than the one originally used in Ref. (7. It is
covariant, and the unwanted cut at space-like values of P2, which can be reached
when the #N amplitude is imbedded in NN scattering, can be eliminated by
the nucleon form factor Eq. (1.11). With these approximations, the contact term
generated by the crossed nucleon pole is
2
- ”(P—mﬂ,

A2-1 + P
2m  VPI2m - p) 4m?

ﬁ'jv(k’,k, P) = ng'r,-r_,-fug (
(3.4)

whete fo = f][(m— p)?] is the value of the nucleon form factor for the intermediate
nucleon evaluated at the # N threshold.

Putting the pions on shell, the exact crossed pole diagram (3.1) and the
approximate expression (3.4) can be compared below the physical 7N threshold.
In this region, the approximation (3.4) agrees well with the exact crossed diagram
(3.1) when it is averaged over the pion three-momentum (such as would occur
when V. is used as a kernel); it gives only a 7% error when iterated once. The
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approximation is also close to the exact crossed diagram above threshold; at
W = 1560 MeV it disagrees with the exact result by only 15%.

The crossed diagrams for the baryon resonances (N*, A, Dy3) are also approx-
imated in the same way as the crossed nucleon diagram. In this approximation
the A and D3 crossed diagrams are zero, and the Roper crossed diagram becomes

= m'—2m+ P
VC,N‘ (k” k, P) :gir.‘r"‘rj [m] . (35)

With the approximation (3.2) for §, the p and o-like contact terms are
Ve ook, k, P) = —ci’if2 5 A% 4 [r5 'r-](l—)‘)z——-—‘P_m (3.6)
c,op 3 Ny m 0 (3] FENS 4m ] -
and the free p exchange term is
¥, ’ 92 2
Ve (K k, P) = =Cp =5 for, il(P — m), (3.7)

where, as in Ref. [7], the constant C is fixed by the condition Cf2 = fEl(m+p)?)
and C, is a free parameter related to the strength of the p exchange pole.

Note that all of these contact terms depend only on the fotal four-momentum
P, and that the sum of these contributions has the simple form

; P
Vc(P)zA-I-Aoﬁ-I-BP, (38)

where A, Ag and B are constants. This result will be important in the construe-
tion of interaction currents in the next section.

B. A and D,3 vertices

The Feynman rules for the reduced #NA and =N I3 vertices used in our
modified model are

T Bk, P) =1 (22 ) ern(p) (39)
and
a1 ’ o gD I3 i
7iTpo(K', P} = ity (7‘-) k, ©"F(P)rs, (3.10)
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where £’ is the momentum of the outgoing pion {we use a different sign convention
from that used in [7]), j is its isospin, P is the momentum of the incoming baryon,
T; is the isospin 3/2 — 1/2 transition operator, and O, (P) is the covariant spin
3/2 projection operator:

1 1 P+ Py,
OMV(P) = —gu + §7u7v + '3‘ (&‘%I"f—)) . (31}.)

Note that the form factors of the nucleon and baryon have both been removed
from (3.9) and (3.10) because these vertices are reduced, and that the I''s do not
contain the isospin operators. As discussed above (Sec. IG) the pole at P2 = 0
which appears in 0, (P) is removed by the (new) form factors (contained in the
baryon propagators connected to the baryon vertices) which are zero at P? = 0.

C. Inelastic channels

The inelasticity in the Py; and Di3 channels is due to the opening of the 7N
channel. In our new model we assume that these two pions are bound together
as a scalar particle 0*. The mass of this particle is taken to be the same as the
mass of two pions, 278 MeV. The reduced vertex for the N* — ¢* + N transition
is

Ly (k, P) = —i (giN. +9... 2—":;) , (3.12)
and for the D — o* + N transition is
T 1 # v
l‘g‘(k,P) = —; (g:D +9, 5—;) kO (P), (3.13)

where where k and P are the momenta of the outgoing ¢* and the incoming

baryon resonance, respectively. We were able to fit the data quite well without

including the second term in the Dy3 and N* coupling (i.e. Top = G.pe = 0).
We now turn to a discussion of pion photoproduction.

IV. PION PHOTOPRODUCTION

This last section is divided into four subsections. In the first we write down
all of the couplings which describe the direct electromagnetic production of the
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Roper, A, and Dy3 from the nucleon. These expressions contain the precise def-
initions of the resonance photoproduction parameters given in Table II, and are
individually gauge invariant, which justifies neglecting them in the discussion
given in Section IL Next, we construct off-shell current operators for the single
nucleon and single pion which are consistent with the WT identities Egs. (2.23)
and (2.24). These current operators are modified by the presence of the nucleon
and pion form factors. In the third subsection we construct the interaction cur-
rents implied by the momentum dependence of the electromagnetic couplings
and the contact interaction V. [given in Eq. (3.8)]. To obtain these interaction
currents, we use minimal substitution, and then demonstrate that they satisfy
the necessary constraints obtained in Section II. Finally, we assemble the pieces
and construct the actual pion-photoproduction driving terms which fully define
the model.

A. Electromagnetic couplings

[n this subsection we define the electromagnetic transition currents for the
baryon resonances, yNB. We have removed an overall factor of ¢ from each
current.

1. Della current

According to Jones and Scadron [41] the YN A transition current can be writ-
ten in terms of a standard “normal parity” set of invariants 07" ys. For real
photons this gives

I (P p) = - [G1O7* + G305*] s, (4.1}

where T3 is the third component of the isospin 1/2 — 3/2 transition operator,
and the current conserving spin invariants are

O =(dg"" - ¢"7*)

O4* = (¢ P — q.P' g"¥) | (4.2)
Here q is the photon momentum, p is its polarization index, v is the polarization
index of the outgoing A, and P’ = % p + P), where p and P are the four-

momentum of nucleon and A, respectively. The (¢; and G, couplings are often
written in terms of the magnetic coupling Gps and the electric coupling Gg:
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Gu= % [(3M + m)%— +(M - m)Gg]
Gp= -?(M——m) [%+G2] , 4.3)

where M is the A mass,
Benmerrouche et.al. [39] obtain NA transition currents from the following
two contributions to the Lagrangian

, € ~
Lina = i Ta 8, B (V) sd Fos + hc.

Lina = ‘%Ts ¥ 2N (X)750%9 Fy, + hec., (4.9)

where ¥ and ¥, are the nucleon and delta fields, respectively, and X, (X) is
1
B () = g+ |50+ 404+ %] s, (45)

where A and X are parameters. The interaction derived from Eq. (4.4) using the
9uv term in X, (X) (and removing the factor of e) gives Eq. (4.1) with

-5
Gl*2m

2
Gy = # : (4.6)
The couplings of Refs. [39) and {41} therefore differ by an extra term which de-
pends on X, and which can be shown to vanish at the A pole.

In order to be consistent with our pion-nucleon model, we introduce a new
YNA current which has almost the same form as the current derived from the
Lagrangian (4.4). The full current, j3*(P,p) is related to a reduced current

i (P,p) by
i (P.p) = In(@*) fa(P?) 554 (P,p), (4.7)

where fy and fa afe the nucleon and A form factors, and the reduced current is

- oV, P) P2 2 g, g
JKH(P»P) =Ty f‘g(}()z) (mz {5’3’ 0?“ + 4‘::209“] s - (4.8)
A

Note that the reduced transition current (4.8) has been divided by the square
of the A form factor, cancelling the A form factors contained in the damped A
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propagator to which this current is connected. This cancellation isidentical to one
which occurs naturally in the pion Born term (as discussed in Sec. IVB2 below),
and hence is consistent with the treatment of other electromagnetic currents. It
also improved our ability to fit the £+ and M,+ amplitudes. The (Pz/m"’a)2
factor in the reduced current is introduced to kill the pole in O#,(P) and to
improve the fit. All of these factors can be incorporated without spoiling gauge
invariance because the YN A transition current is separately gauge invariant.

Because of the properties of the spin 3/2 projection operator, our coupling
{4.8), the coupling derived from Eq. (4.4), and the coupling (4.1) give the same
scattering amplitude.

2. Roper current

The reduced YN N* transition current is

s 1 ( p)"d i pyqy)
B (p - 7# - _.__jl -+ - ¥
JN‘( :p) - Tﬂfz . (Pz) (gm' [ P2 pz ane m ’ (49)

where g,p and P are the momenta of the photon, the nucleon and the Roper,
respectively, and g, .. and g,,. are the strength of the two independent couplings.
We divide the Roper current by fZ. in order to be consistent with the Delta.
Note that

Quibh-(P,p) =0, (4.10)

showing that all diagrams containing the Roper transition current are individually
gauge invariant.

3. Dhs current

Like the A, the Dy3 also has two independent couplings. The reduced Dja
current is similar to the A current except it has an opposite parity and isospin
1/2. The current is

0P P\ 10 s Gap s
[ - 1D I 1D ]
JD (P;P)—- 173 _fg(P:!_) (m?; ['2'm"" 01 +4m_‘202 ] . (411)
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In order to be consistent with the treatment of the A described above, we have
also divided this current by the square of the form factor of the D3, and mul-
tiplied by a factor of (P?/ mf))2 to eliminate the pole in the spin 3/2 projection
operator ©#,(F).

We now turn to a discussion of the construction of the off-shell current oper-
ators for the nucleon and the pion.

B. Off-shell electromagnetic currents

As discussed in Sec. I1, the reduced current operators must satisfy the WT
identities Eqs. (2.23) and (2.24). These involve damped propagators, instead
of bare propagators, and as a result the current operators will have a different
structure from those usually encountered.

1. Nucleon current

A complete description of the general reduced off-shell nucleon current re-
quires 12 invariant functions:

iotq,

NP p) = Fiy" + Fy + F3¢”

o,

A
+A_(p') |Fyv* + Fs + Fs ‘I‘u]

iohvyg,
2m

+ [F?T"-i-Fs +F9q"'] A_(p)

ioH

s+ Fadt|AG), (1)

FA_(P) (Frov* + Fy

where the negative energy projection operator is

_m—y
Am="F (4.13)
This current operator must satisfy the Ward-Takahashi identity (2.23)

awito(P',p) = Sy} (p) - 531 () = f’g(;,g - gaﬁ; , (4.14)
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where fn(p?) is the nucleon form factor. Writing out both sides of this equation
gives
Fig4Fa @ + A_(p)[Frod + Fi24*]A_(p)
+HA-(F)[Fad + Fo 0°) + [Frd + Fo g*]A_(p)

- %A_(p) - R%’;‘;—Q)A_(p’). (4.15)

Equating the coefficients of the four independent Dirac matrices on each side of
this equation gives four relations between the invariant functions which permits
us to eliminate Fy, Fy, Fo, and Fio

m? — p? m? — p?
= —Fy| ——
p= b () ()

Fip = Z (F7 — Fy)
2m m? — p? 2m

Fe = —W + Fio (W) + ?(Fl + Fy)
2m m? — p/? 2m

where f = fy(p?) and f' = fn(p). Substituting these constraints into
Eq. (4.12) gives the following general result:

tohvy,

Iho(?'1P) = Foy™ + (Fy ~ Fo)i* + Fy

tofq, iohvq,

+A-(7) [1«1, 4 By ] + [F7 4 Fy ] A(p)

iohy,

2m

+A_(p') [GD v + (Fio - Go) ¥ + Fu, ] A.(p), (4.17)

where 3 = o4 — g#d/q?,

1 m2_pl2 1 m2__p2
Fo= 25 s Y E a3
f? pt—p e p-p
1 1 4m?
6o~ (7 7) e 1

and, to eliminate kinematic singularities, we require that ¥y — Fy = Fiy— Gy =
Fy = Py = 0 at the photon point ¢ = (. Hence, for real photons the terms
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proportional to ¥* vanish, and we obtain the most general form for the current
operator of a real photon:

_—
“u I — F M F ior qV
ino(P'sp) = Foy* + 2 g
; iokvq, ioh’q,
HA-(p) Fs ——== + Fs —-—=" A_(p)
' iU”VQH
+A_(p') |Go+ F1a - A (p). (4.19)

For simplicity, in this calculation we take Fy = Fz = 0 and Fy = Fokpy,
11 = Gokn, where £y is the magnetic moment of the nucleon. If the initial
nucleon is on-shell this gives

1#(! )__1___ Ptk id'gq, (420)
InolP,P) = f?v(p,z) T N o - -

Note the presence of the factor of 1/ f2(p’?), which supports our decision to divide
by the resonance form factor in the definitions of the transition currents (4.8),
(4.9), and (4.11).

2. Pion current

Following Gross and Riska (35], a simple off-shell current operator which sat-
isfies the WT identity (2.24) is

~ T{k2) — H(k?
J#o(k',k) =(k+ k')” [l + —(kT)_'EE(-—)] ' (4.21)
where k and &’ are the momenta of the incoming and outgoing pion, and
1
2y _ _ 2_ .2
(&) = [f,?(kz) 1] (k% — 1) (4.22)

and fy(k?) is the pion form factor. If the outgoing pion is on-shell, as occurs in
the Born diagram Fig. lc, the reduced current reduces to

7k k) = ﬁkz) (k+ &)*. (4.23)

When this current is used in the Born diagram Fig. lLc, the factor of 1/52(k?) is
cancelled by the pion form factors in the damped pion propagator, Eq. (2.26).
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C. Interaction currents

In this subsection we derive the exact forms of the interaction currents intro-

duced in Sec. I and shown in Figs. 1(d),(¢3) and (f), and 2(e2) and (f).

1. The five-point current

We begin with a discussion of the five-point current, fgl /2(9’ P), shown in
Fig. 1(f). The discussion of gauge invariance in Sec. II showed us that the origin
of this current is the dependence of the N contact interaction, Eq. (3.8), on
the total pion-nucleon momentum P in the channel which couples to the proton,
where the isospin is 1/2 and the charge is e. Hence, to obtain this current we need
only consider the effect of the replacement of the four-momentum P by P — e A
{(minimal substitution) in the 7 = 1/2 part of the contact interaction (3.8). Such
a replacement generates an electromagnetic interaction of the form

—ie Jt | 5(g, P)Ay = —e BM2y4 A, (4.24)
and hence the current is simply
—iJ (g, P)=—B'2yn. (4.25)
Note that this current satisfies the constraint
~iguJG1y(4, P) = —BY2§ = B2 [P — (P ¢)]
= V/"(P—q) - V}I(P). (4.26)

In this case the interaction was linearly dependent on momentum and the
interaction current was easily obtained directly. In the general case of an in-
teraction with a non-linear momentum dependence the interaction current can
be obtained following proceedures suggested by Ohta [32], and worked out for
several illustrative cases in Ref. [42). :

2. The four-point currents

The four-point currents, J#5(g, P) shown in Figs. 1(d) and 1(e3), appear
because of the dependence of the tNN, #NA and 7N D3 vertices on the mo-
mentum of the pion. The 7N N* vertex does not depend on the pion momentum
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and therefore does not contribute a four-point current. These currents can all be
obtained by minimal substitution.

We begin the discussion with the # NN vertex, which produces the familiar
Kroll-Ruderman interaction current term. The reduced # N N vertex was given in
Eq. (2.17). Minimalsubstitution requires that we replace the pion momentum, k',
by &' — neA, where n = %1, or 0, depending on the charge of the pion. Recalling
that the operator for an outgoing 7 is 75, the factor of —pe becomes

2= (T 4 1) = g (emy — er_) = dery
= —Hi(ry =) ~JiCery +er) = i
T, 0. (427)

This substitution is summarized by 7, — ie€;j3 Ty, giving

. — A}y

I (g) = ieijam; (IT:?T—QH (4.28)
Note that the complete Kroll-Ruderman interaction current includes two terms.
The first term, obtained above from minimal substitution, satisfies the inho-
mogenous constraint (2.30), while the second term, not obtainable from minimal
‘substitution, satisfies q,‘f}; (g) = 0. The full Kroll-Ruderman current is given in
Eq. (4.37) below.

Next, consider the conjugate of the reduced *NA vertex given in Eq. (3.9).
This vertex depends on both the incoming pion momentum, & [and hence has
the opposite sign from (3.9)), and the Delta momentum, P, but the dependence
on the Delta momentum generates no interaction current in the rest frame of the
Delta, and hence, because of covariance, vanishes in all frames. The dependence
generates a substitution similar to that given in Eq. (4.27), with all 5 replaced
by -—i",j. Hence, according our conventions, the yaN — A four-point current is

—ie iyl = i (iecsT}) ( ”7‘“) O"H(P) = —ie (—ieijsT] ) i, (4.29)
where 3}"5 was introduced in Sec. II, Eq. (2.37). Hence
ita = (2) o), (4:30)

and satisfies the constraint Eq. (2.42)
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1 o(g, P) = ) 4,0"(P)

(.g.e
H
(22) 0"(P)t + 9)u - 4Pt

= Tao(k, P) — Tao(k + ¢, P), (4.31)

as required for the proof of gauge invariance.
The four-point current generated from the #N D)3 vertex can be obtained by
the same manner. For the Dy current we have,

~ie Jip = — (iecija;) ( %’) 5 OVR(P) = —ie(—ieyjar;) Ty . (4.32)
Hence the Dy four point current
ifp =i (‘%’) 15 ©"*(P}), (4.33)

satisfies the constraint Eq. (2.47), as required for gauge invariance.

D. Driving terms

Using the electromagnetic currents described in the previous sections, this
subsection gives explicit expressions for all of the driving terms shown in Fig. 1.
For convenience, the direct and crossed nucleon pole contributions [Figs. 1(a)
and (b)], the Kroll-Ruderman term [Fig. 1(d)], the nucleon pole contribution to
Fig. 1(e3), and the five piont current [Fig. 1(f)] will be referred to as “nucleon”
contributions. The meson exchange diagrams [Fig. 1(c)] and all of the loop
contributions from off-shell pions [Figs. 1(el) and (e2)] will be referred to as
“meson” contributions. The resonance contributions to Figs. 1(a), (b), and (e3)
will be discussed separately.

1. Nucleon
The direct nucleon pole diagram [Fig. 1(a)] is:

(74) w0 Py = om |3 = g s (L oy~ g - 1)

2m
(4.34)
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where g is the photon polarization vector index, ¢ and &' are the photon and pion
momenta respectively, i is the isospin of the outgoing pion, and & N = %[np+fcn +
(kp — Kn)73] is the nucleon anomalous magnetic moment.

Note that the 7NN form factor does not appear in the direct pole diagram
(4.34), because when one of the nucleons in the YNN vertex is on-shell, the
reduced current becomes Eq. (4.20), and the factor of 1/ fE(P?) in this equation
cancels the form factors contained in the damped nucleon propagator, Eq. (2.25).
Note also that the conjugate of the driving term (4.34) satisfies the relation

(7 ¥,q,P)=no(y"! 1, - Lld'v" - ']k,

(g b 520

= =90r" 5 — azldr" - vl x.) (5{—?) L [" - (1;—1:)“:] i

==str# 5+ gl 1) (g ) [1 52
= (j;‘gf)a(q, k', P). (4.35)

Recalling the connection (2.15) between the current and the kernel, this relation
leads to Eq. (2.9), the condition needed to give the correct unitarity relation.

Since the final nucleon can be off-shell, the crossed nucleon pole diagram
[Fig. 1(8)] is

(73) (¥,0 P) = [Fo 3@, @) + Go A_ () T4, Q) A_(Q)]
% (%(_Q%) Tn(k, p)m; (4.36)

where 4 (p', Q) = 7% — (74 - §7*) K, is the full reduced nucleon current,
Fo and Gy are functions of p'2 and @* defined in Eqgs. (4.18) and (4.19), T n (¥, p)
is the reduced, dressed # NN vertex function, which satisfies Eq. (2.18), @ =
P’ — ¢ = p~ k' is the four-momentum of the virtual intermediate nucleon, and
P =p+gq=p +k is the total momentum. In this term the #NN form factor
is not cancelled, because both nucteons in the YN N vertex are off-shell.

As discussed above, the Kroll-Ruderman term, Fig, 1{d), has two parts. The
first part, given in Eq. (4.28), is obtained from the momentum dependence of
the 7NN coupling using minimal substitution, and the second part is needed to
insure that the low energy theorem [24] is independent of the mixing parameter
A. The complete Kroll-Ruderman term is therefore
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- — A}y
(), =9 [‘l—znﬁi = g ) + r,«w)} B (437)
Note that the second term is separately gauge invariant, and therefore did not
enter into the proof of gauge invariance presented in Sec. II.

The additional interaction current driving terms are obtained from the in-
teraction currents worked out above. The nucleon contribution to the diagram
shown in Fig. 1{e3) is obtained from Eq. (4.28)

(j#‘)e:i(k" 4 P) = _TS'T3% f‘NO(P’, P)S'N(P)(l e

k" fK’ [(P — k”)‘z] P u
(27!')32(‘),:" (m - ’5 + pH) PN(k ,P) : (438)

The contribution from the five-point contact current shown in Fig. 1(f) is
obtained directly from the five-point current, Eq. (4.25),

~ 3 2 N AV
(JH‘)L% (q, P) - _TI-TPBllz'Y#/ (2‘ﬂ'£i)3§wkil {:’;[E’jﬁ _::‘.)H)] I‘N(k”’ P) . (439)

Note that this current contributes only to the isospin 1/2 channel.

2, Mesons

The pion pole contribution to the meson exchange diagram, Fig. 1(c), is

P, . kl k 7
(J,'J‘)c(k’.q, P) = —i¢ijam; %‘2__:‘}2"1‘”“7’1’) , (4.40)

where k = p— p’ = k' — ¢ is the four-momentum of the off-shell pion. The vertex
function I~‘N(k, p) describes the coupling to an off-shell pion, which, because pions
are on-shell in our propagators, does not appear as an elementary amplitude in
our model. However, as discussed in Sec. II, the simple structure of the model
permits us to obtain the reduced off-shell vertex function from the reduced on-
shell one by simply using the correct off-shell pion four-momentum. Furthermore,
the square of any pion form factor which might be associated with the damped
propagator of the pion would be cancelled by the factor of 1/ f2(k2) in the off shell
current [recall Eq. (4.23)}, so no such form factor appears in the pion exchange
diagram (4.40).

Contributions from off-shell pions also appear in the diagrams shown in
Figs. 1(el), and (e2). Together, these diagrams contribute
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. PR (28" + g)*
L ¥ ! — de. 17 kl k” P
(J )el+e2(k ’q,P) 26Jt3] (2'}1‘)32(‘)];” VIF( ' + LB )Ttpz _ (k” + q)2

fj% [(p - k”)2] T "

where V3 (', k" + g, P) is the reduced NV driving term, including all resonance
contributions, for scattering of an incoming pion with isospin j to an outgoing
pion with isospin i. Again, just as in the pion pole term (4.40), the pion form
factor will cancel, showing that no pion form factor appears anywhere in the final

result.
The meson driving terms also include additional contributions to Fig. 1(c)
coming from w and p exchange. The w exchange diagram is

waNgwrr i
HlmE — (¥ - g)?]

Y waNgwry Ko oy gy
=S (14 g - 0)

K . :
0k [+ 3 i (K — g)1]

&) c"""”’r,,
—(¥-q?°

(f;ﬂ)c(k', 0, P)=ibs
(4.42)

where €gy93 = 1. Using the identity

¥ l-‘y ¥ I’s
Moy, = f L R A R S S OV v e S tarard
(4.43)

the w exchange diagram reduces to
Fér" — kqy + k¢
mi—(k~gq?
(4.44)

(72) (0. = i Jettoms (| sy

where ¢f = ¢ = 0, and because the current Is transverse, y#f = — gy,
The p exchange diagram has the same structure as the w exchange diagram,
except the p is isovector. Hence

v —k.gy* + k'ng
m;~(k—q)? °
(4.45)

() (0. py = rg oms (1 Ko )

55

8. Roper

The Roper has the same spin-isospin structure as a nucleon, and therefore
the direct and crossed Roper pole diagrams have the same structure as the nu-
cleon pole diagrams. They are constructed from the YNN* transition current,
Eq. (4.9). The direct Roper pole diagram [Fig. 1(a)] is

(73) (.0, P) = gy i (m,. - P) (9.0 7%(P) - e fyd - ]
(4.46)

where

P#

#(P) = 4+ . :
TH(P) =7 P (4.47)
Letting @ = P— k' — ¢ = p ~ k', the crossed pole diagram [Fig. 1(b)] is
jiu ' — , 7 S rng s N
(T3:) .0, P) = 0,77 (5,00 7#(@) a0 4"]) s (448)

Note that the N* form factor in the current, (4.9) is cancelled by the form factors
in the damped N* propagator, as we have seen in several previous cases.

4. Delta

In parallel with the approximations made in the 7N calculation, the crossed
A pole contribution to Fig. 1(b}) is taken to be zero. This approximation almost
decouples the spin 3/2 channel from the spin 1/2 channel, allowing us to fit these
different channels independently.

The direct A pole contribution to Fig. 1(a) is obtained from the YNA tran-
sition current, Eq. (4.8),

(jl'.u) (K, q P)=TTs (Q_A_) Y ©”A(P) (Pz/mi)z [gl_aof\u + aa OA#J e
A a + 4> ﬂ v mA 1 2 ¥

- P (2m 4m?

(4.49)
where ©,, is the spin 3/2 projection operator, and (4.49) has been simplified by
using O,,AG",, = ~-0,,. Note that the A form factor in the current cancells a
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similar form factor in the damped A propagator, as we have seen several times

before.
The Delta contribution to the four-point function in Fig. 1(e3) is constructed
from the y#N — A four-point current (4.29):

2 r2/p2
7 e ieopyt (98 JA(P?) L, o
(JA")ca(k’)q,P) - _zfjtsq—;i} T (7) _'—mA — P k;@ “(P)

a3 fﬁ,(p _ k") . .
. ./ (27)32win (m — P+ F) Cn(k",p). (4.50)

Recalling that the isospin transition operators satisfy Eq. (2.38), and using
Eq. (2.36), the isospin factor in (4.50) reduces to

—iees BT = il G = 1, [T, - 2033 = -1, (1.81)
5. D]3

The D3 resonance contributions to the diagrams 1(e) and (e3) are almost
identical to those for the A, except for a different isospin factor and some sign
changes due to the opposite parity of the D3.

The direct D13 pole contribution [Fig. 1(a)] is

Fp s 9D\ 11w (szmf))z Gip yrn _ Gap ;2
(7} .0, Py = —mimy (7) B0 (P)S e [foop - Lo o] .
(4.52)
The D,5 contribution to the four-point current [Fig. 1(e3)] is:
Fip ! gD ? flz)(}ﬂ) [IPe9
(78) 0. P1= —2mms (£2) Lo oo
S _IxeE) by, sy

(@n) 20 (m— 5+ F')
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6. Inelasticity

As discussed in Sec. IIIC, the inelasticity of the N* and the D3 is described
by a fictitious ¢* N channel, where the ¢* is a scalar meson with the mass of
two pions, and the couplings of the N* and the Dy3 to this channel are given
in Sec. IIIC. For simplicity, we assume that the photon does not couple di-
rectly to the inelastic channel, but it can couple indirectly through the process
T+ N — {N*,Di3} — ¢ + N, which takes place without going through an
inlermediate 7N channel. These processes, which are not generated by the final
state #V interactions, have been included in our model by adding them to the
direct resonance pole driving terms in Fig. 1(a).

'To accomplish this, the bare resonance propagators for the N* and D3 are
replaced by the inelastically dressed propagators

-1
my- — P+ Liped
—i0" (P)
mp — P 4 Eipel’

G+ (P)=

G (P)= (4.54)

where 2;;:,‘:-" and Ef.;"” the self energies of Roper and D;a due lo inelastic contri-
butions only. This replacement insures that all of the inelastic processes excited
by the photon without passing through an intermediate 7N state are included in
the calculation. The inelastic self energies are

. 1 2 3 A 2 EAY:
Ou(P)Bp= (22) 37 [ it o XA )

Iy
) 2 , 3 2 Y
2=~ (000)" e (P) [ e A (45)

where the intermediate four momentum & = (ex,k), and ¢ = \ /mf. + k2.
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APPENDIX A: NOTATION AND ISOSPIN DECOMPOSITION

In this paper we adopt conventions designed to allow us to work as frequently
as possible with terms which do not include a factor of ¢ or the electric charge e.
Starting with the Feynman rules (as found, for example, in Ref. [40) we introduce
the following conventions:

e All one body currents (i.e. three point currents) and propagators will be

multiplied by 4.

 All hadronic vertex functions are left unchanged (i.e. no multiplication by

i).

o All four and five point currents, which would normally contain an overall

factor of i (the Rule 0 of Ref. [40]) will be muitiplied by an additional factor

of i. If Rule 0 is omitted, this is equivalent to multiplying them by ~1.
 The electric charge e > 0 will be removed from all currents.

Using these rules, all four and five point currents are defined as in Eq. (2.15),
and the basic nucleon Born term is real. Three point currents are all real, except
for the ¥ + N — A transition current, Eq. (4.8), which now contains an extra
factor of 1.

The scattering S matrix for pion photoproduction is written in the following
form:

m fi

S = 1—i2m) Nk 4P ~g—p)—— M
oy 1( 1!’) (K +p' ~q p)‘/m—p: y

where &' = (we, k), ¢ = (¢,9),p = (Ep,p),p’ = (Epr, p’) are the four-momenta of
the pion, photon, incoming and outgoing nucleon, respectively, and the energies
are wy = /p? + k2 E, = /m? +p? By = /m? 4+ p'?, with i and m the
masses of the pion and nucleon.

Using the fact that the photon transforms as the sum of an isoscalar and the
third component of an isovector, the isospin structure of the My, matrix can be
written:

(A1)

M,.f - M;‘,,&,-a + M;Y %{T;‘, Ta] + Mﬂq-rﬁ y (Az)

where 7; and 73 are the Pauli spin matrices and i is the isospin index of the pion.
The isovector tramsition amplitudes £¢'“’ may be expressed in terms of the
amplitudes M,(rf,’ 232 with isospin 1/2 and 3/2 in the final state:

MYP =M} oMy, MMP= M} - ML (A3)

The isoscalar amplitude My always leads to a final state with isospin 1/2. The
amplitudes for photoproduction from a proton are:
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1
1/2 — + - Q
(M,,1 )pmm =3 (M} +2M 4317, )
( 342)protaﬂ - ::’ B "'—‘T (A4)

Each of these isospin scattering matrices may be expressed in terms of the
operators (%,

M=) O\My+0 M, (A5)
i=1,2
where
1
0} = 517N %
Of = 5(1£1°)2k ey (A6)

where, for an incoming photon traveling in the +: direction, the photon polar-
ization vector, ¢, is

1 PN
o= (M%), (A7)

where A, = +1 is the pholon helicity.

APPENDIX B: MULTIPOLE AMPLITUDES

Denote the incoming and outgoing nucleon helicities by Ay and AN+, respec-
tively, and specialize the scattering to the «z plane (so that ¢ = 0). Following
Jacob and Wick [43], the angular momentum decomposition of the helicity am-
plitudes My, () is given by:

Maa(®) = 1= 37 Q25+ 1) My ), (0) (1)

where A =X, — Ay and M = —An/ . Using the orthogonality of the d functions,
the partial wave amplitudes are

M;,A = Qw/dcosﬂM,\a,\(ﬂ) d';/\,(ﬂ). (B2)
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The functions d‘;u, for 7 1/2 and 3/2 are written explicitly in Appendix C. The Helicity ——:
orthogonality of these functions makes it easy to express the integrated cross

section oyt in terms M{,, . < —fO}_I— > = 12 2% in %H
Now, since Ay = %1 for real, transverse photons, we have eight helicity am- ImHk
plitudes; however parity relates all the amplitudes with A, = I to those with < -0 }~> = —Vlii-l-sin 10
Ay = —1 (and opposite signs for Ay and An:). Hence we need consider only mz1 22
those four amplitudes with Ay = 1. Rememberir_lg that ¢ = 0, we can evaluate all < Oi - > = "1\/= z2|q] k| sin 6 cos % 9
of the operators < An:|O% |An >=T(p', An+) O% u(p, An). In the center of mass ? mz
system, where p = —q and p’ = —~k explicitly: 2 oy alkP? '
Helicity ++ : < ~j0%|-> = Vi ma sin§ cos 30 (B6)
<HOYH> =0 where 21 = /E, + m and z = \/E,. + m.
<HOL+> =0 Parity conserving amplitudes may be constructed from the helicity amplitudes
by taking the following li combinations:
<HOU4 > = _715 P lalkf sin  cos 10 y taking the following linear com ons
e 11 M M )
2 _ Z1 . A -_— +
<HOI]+> = %—@ﬂt]?mnﬁcos 10 (B3) o 1\/'2'147r( 44 -34
— = _dnd o agd
Helicity +—: - Awy- = ﬂ4w(M%% M2y 4)
1 1 ; ;
1 _ 1 Y122 1 e & ¥ £ ] ]
< +H04 |- > —75—m—cos§6 By+ 2£(£+2)4W(M%§+M‘%%) €>0
<+|oij—>=-‘lq"—k|cosla By, 1.=—-—1—-—i(M{,—MJ'. ) €>0 (B7)
Vimuz, 2 () V26(£+2)4r’ 13 ~-33
2 _ o zldk .
<HOY|-> = v a— sin § sin 36 where £ = j — 1/2. The multipole amplitudes are obtained from the parity
2 amplitudes using the following relations:
> 02 - 1 ) Ikl . dsi 10 4
<+0Z)-> = 72 mp, Snfeing (B4) )
E¢+ = f__l (A¢+ + £B£+)
Helicity —+: Jlf
My = —— (Aps — {£+2)B,
ot 2o o= g (e = (E4 DB
1 . 1
< "'IO_I+ > =0 E(t+1)— = —-m (A(g_H)— - (£+ 2)B(t+1)‘)
102 1 z?.l‘l”kl s in L 1
<-lo{l+> = 73 g Sinfsing Mgy1y- = Sl (Age1)- + €Beqry-) (B8)
2 _ a1 alkl? |
<=0+ > = 7E ma, o fsin 360 (B5)
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APPENDIX C: THE ROTATION MATRICES

d;li :di’;_% = cos

dif?, = -d_’:% = —sin 46
3 2

(C1)

“
!
o

d;_’i = —v/3cos®}0 sin 44

d:;/i = cos }# (1 — 3sin?}4)
d‘;‘m_% = V3 cos 40 sin? 4

d:;/i* = sin 48 (1 ~ 3 cos?16) (C2)
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TABLE L. The parameters of the N model. Those in bold face were varied during
the fit; the others are either fixed or determined by the fit.

parameler bare dressed
g/4r 13.5 13.3
A 0.200
c 0.884
C, 0.674
m* 1431.8 1442.2
92, /4 3.590 5.795
I 228.6
Z(m) —0.0042
Z(m*) —0.0043 —0.023 ¢
ggv_ JZt; 0.062
yz,,,k/*lvr 0.0
1225.4
A* 1853.7
ma 1301.8 1229.9
g2 [ax 0.813 0.808
Ta 123.9
Aa 1515.5
mp 1520.4 1517.9
g /4 0.704 0.698
T'p 124.5
97 [4x 0.031
92 [ax 0.0
Ap 1829.3
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TABLE II. The new parameters in the 9N the model.
varied during the fit; the others were fixed.

Those in bold face were

parameter value
JiN+ -0.231
g2N- 0.831
fia 1.121
gaa 1.333
oo —2.340
G20 —2.450
GoryGoNN —0.439
GurnvyGuNN 8.168
foNN/9on N 7.52525
JuNN/dunN 0.76
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