Angular quadratures for improved transport computations

PDF Version Also Available for Download.

Description

This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.

Physical Description

Medium: P; Size: 71 pages

Creation Information

Abu-Shumays, I.K. July 22, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Bettis Atomic Power Laboratory
    Publisher Info: Bettis Atomic Power Lab., West Mifflin, PA (United States)
    Place of Publication: West Mifflin, Pennsylvania

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper introduces new octant-range, composite-type Gauss and mid-point rule angular quadrature formulas for neutron and photon transport computations. A generalization to octant-range quadratures is also introduced in order to allow for discontinuities at material interfaces for two- and three-dimensional transport problems which can be modeled with 60-degree triangular or hexagonal mesh subdivisions in the x-y plane.

Physical Description

Medium: P; Size: 71 pages

Notes

INIS; OSTI as DE00754847

Source

  • Journal Name: Journal of Transport Theory and Statistical Physics (Special Issue); Other Information: Submitted to Journal of Transport Theory and Statistical Physics (Special Issue)

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: B-T-3276
  • Grant Number: AC11-98PN38206
  • Office of Scientific & Technical Information Report Number: 754847
  • Archival Resource Key: ark:/67531/metadc709988

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 22, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 29, 2016, 3:58 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Abu-Shumays, I.K. Angular quadratures for improved transport computations, article, July 22, 1999; West Mifflin, Pennsylvania. (digital.library.unt.edu/ark:/67531/metadc709988/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.