On the Automatic Generation of Plans for Life Cycle Assembly Processes

PDF Version Also Available for Download.

Description

Designing products for easy assembly and disassembly during their entire life cycles for purposes including product assembly, product upgrade, product servicing and repair, and product disposal is a process that involves many disciplines. In addition, finding the best solution often involves considering the design as a whole and by considering its intended life cycle. Different goals and manufacturing plan selection criteria, as compared to initial assembly, require re-visiting significant fundamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of issues in assembly planning or to applied studies ... continued below

Physical Description

Medium: P; Size: 63 pages

Creation Information

CALTON,TERRI L. January 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Designing products for easy assembly and disassembly during their entire life cycles for purposes including product assembly, product upgrade, product servicing and repair, and product disposal is a process that involves many disciplines. In addition, finding the best solution often involves considering the design as a whole and by considering its intended life cycle. Different goals and manufacturing plan selection criteria, as compared to initial assembly, require re-visiting significant fundamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of issues in assembly planning or to applied studies of life cycle assembly processes that give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for, optimize, and analyze the cycle assembly processes. The study of assembly planning is at the very heart of manufacturing research facilities and academic engineering institutions; and, in recent years a number of significant advances in the field of assembly planning have been made. These advances have ranged from the development of automated assembly planning systems, such as Sandia's Automated Assembly Analysis System Archimedes 3.0{copyright}, to the startling revolution in microprocessors and computer-controlled production tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), flexible manufacturing systems (EMS), and computer-integrated manufacturing (CIM). These results have kindled considerable interest in the study of algorithms for life cycle related assembly processes and have blossomed into a field of intense interest. The intent of this manuscript is to bring together the fundamental results in this area, so that the unifying principles and underlying concepts of algorithm design may more easily be implemented in practice.

Physical Description

Medium: P; Size: 63 pages

Notes

OSTI as DE00750303

Source

  • Other Information: PBD: 1 Jan 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND99-2808
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/750303 | External Link
  • Office of Scientific & Technical Information Report Number: 750303
  • Archival Resource Key: ark:/67531/metadc709935

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2016, 2:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

CALTON,TERRI L. On the Automatic Generation of Plans for Life Cycle Assembly Processes, report, January 1, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc709935/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.