Photoelectron spectroscopy of YbInCu(4): Direct Testing of Correlatec Electron Models

Author(s):
J. Joyce
A. Arko
J. Sarrao
Z. Fisk

Submitted to:
'97 Users's Group Meeting for the Synchrotron Radiation Center
Madison, WI
Oct 24-25

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Photoelectron Spectroscopy of YbInCu₄:
Direct Testing of Correlated Electron Models

J.J. Joyce, A.J. Arko, J.L. Sarrao and Z. Fisk
Condensed Matter and Thermal Physics Group
Los Alamos National Laboratory, Los Alamos, NM, 87545

The electronic properties of single crystal YbInCu₄ have been investigated by means of high resolution photoelectron spectroscopy. A first order, isostructural phase transition for YbInCu₄ at Tᵥ=42 K leads to changes in the Kondo temperature (Tₖ), of more than an order of magnitude (27 K vs. 400 K). This phase transition and accompanying Kondo temperature change provide the most direct test of the single impurity model (SIM) to date. Particle-hole symmetry allows the SIM to be used for Yb compounds as well as Ce heavy fermions with the great advantage that the predicted Kondo resonance is found on the occupied side of the spectral weight function for Yb materials and is thus directly observable in photoemission. The photoemission results are incongruous with the single impurity model predictions for temperature dependence, binding energy and 4f occupancy, encouraging a reevaluation of the single impurity model. The experiments were conducted using the PGM undulator and 4 meter NIM beamlines at SRC. The spectra were taken at photon energies of 40 eV and 90 eV and the combined energy resolution of the analyzer and monochromator was 45-85 meV.

We tested directly three of the central predictions of SIM, the temperature dependence of the Kondo Resonance spectral intensity, the 4f hole occupancy, and the energy shift of the Kondo resonance as a function of Tₖ. The divalent 4f related features in the valence band are identified as the bulk 4f₇/₂, surface 4f₇/₂ and the bulk 4f₅/₂ moving away from the Fermi level with binding energies of -0.02 eV, -0.80 eV and -1.3 eV respectively. For the PES data, the change in the integrated spectral intensity for the bulk divalent 4f features of Yb in YbInCu₄ is roughly 25% between 20 and 80 K. The SIM model calculations using the NCA framework for the same material and temperature range show a reduction in the 4f spectral intensity by a factor of 10.

The discrepancies between SIM and experimental data persist with SIM predicting a hole occupancy (n₄) for the low Tₖ phase of YbInCu₄ in the range of 0.9 to 0.95 while PES deter-
mines the n_f to be 0.5, much closer to the values used in a band calculation for YbInCu$_4$. The hole occupancy is defined as $n_f = \frac{I(f^{13})}{I(f^{13}) + \frac{13}{14} I(f^{14})_{\text{bulk}}}$, were $I(f^{13})$ is the integrated intensity of the primary trivalent 4f component and $I(f^{14})_{\text{bulk}}$ is the integrated primary bulk divalent 4f component from the lineshape analysis. A full valence band spectrum for YbInCu$_4$ at $h\nu = 90$ eV is shown in Fig. 1 with the shaded region indicating the inelastic background emission along with the Cu 3d emission. LuInCu$_4$ was used to determine the non-4f contribution to the emission with the top inset showing the fitting of the divalent YbInCu$_4$ region and the bottom inset the trivalent region. The lineshape analysis discussed in Ref. 2 is used to separate the 4f from the non-4f as well as the divalent 4f signal into surface and bulk components. By isolating the primary emissions in this manner, for both the trivalent and bulk divalent 4f signals, we are able to calculate the n_f for the 4f levels. The PES data gives an $n_f=0.50$ for YbInCu$_4$ at $T=80$ K where SIM predicts $n_f>0.90$. Along with the large discrepancy in temperature dependence and the lack of a predicted energy shift moving through the phase transition, this huge discrepancy in n_f between model and data makes the use of SIM for heavy fermions inappropriate.

† National High Magnetic Field Laboratory and Florida State University, Tallahassee, FL 32306
