Photoelectron Spectroscopy of YbInCu{sub 4}: Direct Testing of Correlated Electron Models

PDF Version Also Available for Download.

Description

The electronic properties of single crystal YbInCu{sub 4} have been investigated by means of high resolution photoelectron spectroscopy. A first order, isostructural phase transition for YbInCu{sub 4} at T{sub v}=42 K leads to changes in the Kondo temperature of more than an order of magnitude (27 K vs. 400 K). This phase transition and accompanying Kondo temperature change provide the most direct test of the single impurity model (SIM) to date. Particle hole symmetry allows the SIM to be used for Yb compounds as well as Ce heavy fermions with the great advantage that the predicted Kondo resonance is found ... continued below

Physical Description

5 p.

Creation Information

Joyce, J.J.; Arko, A.J.; Sarrao, J.L. & Fisk, Z. December 31, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The electronic properties of single crystal YbInCu{sub 4} have been investigated by means of high resolution photoelectron spectroscopy. A first order, isostructural phase transition for YbInCu{sub 4} at T{sub v}=42 K leads to changes in the Kondo temperature of more than an order of magnitude (27 K vs. 400 K). This phase transition and accompanying Kondo temperature change provide the most direct test of the single impurity model (SIM) to date. Particle hole symmetry allows the SIM to be used for Yb compounds as well as Ce heavy fermions with the great advantage that the predicted Kondo resonance is found on the occupied side of the spectral weight function for Yb materials and is thus directly observable in photoemission. The photoemission results are incongruous with the single impurity model predictions for temperature dependence, binding energy and 4f occupancy, encouraging a reevaluation of the single impurity model. The experiments were conducted using the PGM undulator and 4 meter NIM beamlines at SRC. The spectra were taken at photon energies of 40 eV and 90 eV and the combined energy resolution of the analyzer and monochromator was 45- 85 meV.

Physical Description

5 p.

Notes

OSTI as DE98003006

Source

  • `97 user`s group meeting for the Synchrotron Radiation Center, Madison, WI (United States), 24-25 Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98003006
  • Report No.: LA-UR--97-4211
  • Report No.: CONF-9710154--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 661894
  • Archival Resource Key: ark:/67531/metadc709888

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Feb. 26, 2016, 3:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Joyce, J.J.; Arko, A.J.; Sarrao, J.L. & Fisk, Z. Photoelectron Spectroscopy of YbInCu{sub 4}: Direct Testing of Correlated Electron Models, article, December 31, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc709888/: accessed November 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.