Patent Review/Release

TIP REQUIRED DOCUMENT RELEASE DATE 9/20/91

Report No. SSC-L-508
Report Date 9/91

Title Growth Rate in Terms of L

Author(s) D. Briggs

No invention subject matter is described therein and may be released for distribution outside the laboratory.

Steve Brumley
Authorized Signature 9-24-91

Report Coordination

APPROVED FOR RELEASE OR PUBLICATION - O.R. PATENT GROUP
BY... DATE: 11/31/95
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
TO: CHIEF, OFFICE OF PATENT COUNSEL

FROM: SSC Laboratory

ADDRESS: Technical Info & Publ Dept.
2550 Becklemade Ave
Dallas, Texas 75237

1. Document Identification and Proposed Disposition

2. Contract No.: DE-AC35-89ER40484

3. Return of document is necessary.

4. In order to meet a publication schedule or submission deadline, patent clearance by 9/20/91 would be desirable.

☐ 5. This document discloses no possibly patentable subject matter.

☐ 6. This document describes an invention reported as Contractor Docket No. ________________; DOE Case No. ________________.

☐ 7. An invention is disclosed for the first time on page(s) ____________.

8. Remarks:

Signed: Steve Bunley
Date: 9-10-91

TO: INITIATOR OF REQUEST

FROM: CHIEF, OFFICE OF PATENT COUNSEL

☐ 9. No patent objection to above-identified release.

☐ 10. Please defer release until advised.

Signed: Bradley Bunley
Date: 9/13/91

OFFICE OF PATENT COUNSEL

DOE-CH 380 (Rev. 1-83)
1. Growth Rate in Terms of z_1

The most dangerous regime for the multibunch transverse resistive instability is the lowest (allowed) frequencies, where the fields diffuse significantly through the conducting pipe (or liner). In this regime, the actual beam structure consisting of discrete bunches spread $\Delta z \approx 5$ meters apart can be treated as a continuum. The slowly varying E_y fields responsible for coupling the fundamental transverse force are proportional to $I_b \frac{V_b}{V}$, where I_b

$$I_b = \langle I \rangle$$

is the average beam current, and V_b is the transverse displacement of the beam particles. After defining the beam environment, we characterize the Δz profile. For a given structure, the transverse coherent force by the transverse interaction impedance...
\[F_L(z, t) = e \left(E + \delta x B \right) \]

\[= -\frac{i e E_0 y}{2 \pi R} \frac{Z_L}{Z_{\pi}} \]

assuming the dependence \(\exp \left(i (w t - k z) \right) \) for the displacement \(E(x, t) \) and the field, where \(\omega \) is the angular frequency, \(k \) is the axial coordinate, the electric field rotating in a circumference (we use electrical engineering notation) and expressed to keep impedance definitions in their traditional form.

If we describe the transverse focusing system by an average beta function \((\beta_{ave}) \) we can write the following for the transverse motion of the beam particles:

\[\frac{1}{c^2} \frac{d^2 y}{dt^2} + \frac{\beta_{ave}^2}{\gamma} \frac{d y}{dt} = \frac{F_z}{\gamma m_0 c^2} \]

Here, \(\beta_{ave} = (\beta_{ave})^{-1} \) and \(\gamma dt = \frac{2}{c^2} + 2 \beta_{ave}^2 \). With the assumed \(E, t \) dependence, we have the
following dispersion equation, obtained by substituting Eq. (1) into Eq. (2):

\[
\left(\frac{\omega}{c} - k + k_p \right) \left(\frac{\omega}{c} - k - k_p \right) = \frac{j e^2 I_b}{2 \pi R Y_m c^2}
\]

(3)

The unstable root has \(\omega = k - k_p \) and the approximate solution assuming the coherency forces are small (i.e., assuming we don't have dissipation growth rates) is achieved.

\[
\omega = (k - k_p) c = \frac{j e^2 I_b}{4 \pi R Y_m c k_p}
\]

(4)

In this closed system, the axial wavevector is quantized as \(k (2\pi R) = 2\pi m \), and the rotation time is defined by \(k_p (2\pi R) = 2\pi l \). Introducing the revolution frequency \(\omega_0 = c / R \), we can write the expression for \(\omega / \omega_0 \).
\[\frac{\omega}{\omega_o} = n - \gamma + j \frac{I_b}{I_0} \frac{Z_1}{Z_o} \frac{\text{Par}}{Y} \]

(5)

Here we define \(I_o = \frac{4\pi m_o c}{\omega_o} \text{NAVFA} \), \(Z_o = (\rho_o / \epsilon_o)^{1/2} \) and replace \(V_kp \) by \(\text{Par} \). The (real) frequency of the mode is given by the usual expression

\[\text{Re}\,\omega = n - \gamma \, \omega_o \]

(6)

while the growth rate \(\frac{\omega_g}{\omega_o} = -\text{Im}\,\omega \), is

\[\frac{\omega_g}{\omega_o} = \frac{I_b}{I_0} \frac{\text{Par}}{Y Z_o} \text{Re}(\gamma) \]

(7)

The expression given here for the growth rate agrees with that given by Eq.(4.5-75) in the "Blue Book" (Ref.1). To make the connection, note
\[I_0 = MN e \rho / \alpha \]

where \(\alpha = 2 \pi / \omega_0 \) is the revolution period, and the classical radius of the proton is

\[r = e c / I_0 = e^2 \mu_0 / 4 \pi m_0. \]

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.