Turbulent mix study of a double shell capsule

PDF Version Also Available for Download.

Description

Double shell capsules present an alternative, non-cryogenic design for NIF ignition targets. Such capsules have received little interest because it was assumed that hydrodynamic instabilities would forestall ignition. The authors used a K-L turbulent mix model, integrated into a hydro code, to evaluate a series of double shell implosions. The double shell implosions were laser-driven experiments performed at the OMEGA laser. They briefly review the turbulent mix model. The model has adjustable parameters for the growth and dissipation terms. These are initially set by comparison to classical experiments. The model also requires an initial length scale and an initial wavelength ... continued below

Physical Description

373 Kilobytes pages

Creation Information

Vantine, H C & Tipton, R E November 16, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Double shell capsules present an alternative, non-cryogenic design for NIF ignition targets. Such capsules have received little interest because it was assumed that hydrodynamic instabilities would forestall ignition. The authors used a K-L turbulent mix model, integrated into a hydro code, to evaluate a series of double shell implosions. The double shell implosions were laser-driven experiments performed at the OMEGA laser. They briefly review the turbulent mix model. The model has adjustable parameters for the growth and dissipation terms. These are initially set by comparison to classical experiments. The model also requires an initial length scale and an initial wavelength scale. Next the authors briefly describe the experiment. The target assembly consists of an inner shell of glass and an outer shell of brominated plastic. They present the analysis of the hydrodynamic implosion, using the turbulent mix model. The agreement between experiment and calculation suggests that the model could be successfully applied to ignition targets.

Physical Description

373 Kilobytes pages

Source

  • 7th International Workshop on the Physics of Compressible Turbulent Mixing, St. Petersburg (RU), 07/05/1999--07/09/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-136640
  • Report No.: DP0102011
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 757048
  • Archival Resource Key: ark:/67531/metadc709858

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 16, 1999

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 6, 2016, 2:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Vantine, H C & Tipton, R E. Turbulent mix study of a double shell capsule, article, November 16, 1999; California. (digital.library.unt.edu/ark:/67531/metadc709858/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.