The interplay between call flow dynamics and the dissemination of QoS routing updates

PDF Version Also Available for Download.

Description

In this paper, the authors study the interplay between flow dynamics and Quality of Service (QoS) routing through examining its impact on call blocking probability in the context of the ATM PNNI protocol. The PNNI specification consists of a routing protocol, based upon OSPF, and a signaling protocol, based upon the ITU-T's B-ISDN signaling, i.e., Q.2931. In PNNI routing, the routing information exchanged includes link state information as well as ATM QoS state information such as maximum cell transfer delay (maxCTD), cell delay variation (CDV), and available cell rate (ACR). The exchange of routing information is done by controlled flooding. ... continued below

Physical Description

7 p.

Creation Information

Tsang, Rose P. June 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In this paper, the authors study the interplay between flow dynamics and Quality of Service (QoS) routing through examining its impact on call blocking probability in the context of the ATM PNNI protocol. The PNNI specification consists of a routing protocol, based upon OSPF, and a signaling protocol, based upon the ITU-T's B-ISDN signaling, i.e., Q.2931. In PNNI routing, the routing information exchanged includes link state information as well as ATM QoS state information such as maximum cell transfer delay (maxCTD), cell delay variation (CDV), and available cell rate (ACR). The exchange of routing information is done by controlled flooding. In PNNI, when a flow arrives at the entry of the network, the source switch uses its local view of the network to select a path which meets the flow's QoS requirements. If it cannot find a suitable path, the Generic Call Admission Control (GCAC) of the source switch rejects the flow. If a suitable path is found, the flow set-up procedure is invoked and every switch along the path performs Actual Connection Admission Control (ACAC) to determine whether it has the requested resources. If not, the flow is rejected. Otherwise, the resources are reserved. For very large networks, PNNI also supports recursive hierarchical routing. However due to the additional complexity of aggregating topology as well as QoS metrics, they consider only non-hierarchical networks in this study. Based on a simplified version of PNNI, they examine the relationship between the frequency of QoS state updates, the QoS-routing related control traffic overhead and the call blocking probability. For instance, if the source switch uses out-of-date information to select a path, a false blocking situation (i.e., the local routing table's view of the network does not reflect the current increased resource availability), or a false probing situation (i.e., the local routing table's view of the network does not reflect the current decreased resource availability) may occur. In addition, out-of-date information could also lead the GCAC to select false routes. They investigate these issues under varying load conditions and for different QoS state update intervals. In the remainder of this extended abstract, they present the specific problem formulation, describe their approach and report their simulation results and findings.

Physical Description

7 p.

Notes

OSTI as DE00755824

Medium: P; Size: 7 pages

Source

  • IEEE Workshop on Asynchronous Transfer Mode, Reston, VA (US), No date supplied; Other Information: Conference held during 06/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND98-8594C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 755824
  • Archival Resource Key: ark:/67531/metadc709807

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 11, 2017, 3:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tsang, Rose P. The interplay between call flow dynamics and the dissemination of QoS routing updates, article, June 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc709807/: accessed June 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.