Spallation modeling in tantalum

PDF Version Also Available for Download.

Description

A gas gun plate impact spallation experiment has been performed on commercial purity rolled tantalum. The shock pressure achieved was about 7 Gpa and was sufficient to induce incipient spallation. The particle velocity was measured at the free surface of the spalled plate, and the spalled sample was recovered and examined metallographically using image analysis. The quantitative image analysis results are being used to develop a damage model. The model is micromechanically based and involves novel void growth and coalescence processes. The 1D characteristics code CHARADE has been used in a preliminary simulation of the VISAR free surface particle velocity ... continued below

Physical Description

9 p.

Creation Information

Tonks, D.L.; Hixson, R.; Zurek, A.K. & Thissell, W. September 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A gas gun plate impact spallation experiment has been performed on commercial purity rolled tantalum. The shock pressure achieved was about 7 Gpa and was sufficient to induce incipient spallation. The particle velocity was measured at the free surface of the spalled plate, and the spalled sample was recovered and examined metallographically using image analysis. The quantitative image analysis results are being used to develop a damage model. The model is micromechanically based and involves novel void growth and coalescence processes. The 1D characteristics code CHARADE has been used in a preliminary simulation of the VISAR free surface particle velocity record. Implications for ductile damage modeling will be discussed.

Physical Description

9 p.

Notes

OSTI as DE98001541

Source

  • International workshop on new models and numerical codes for shock wave processes in condensed media, Oxford (United Kingdom), 15-19 Sep 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98001541
  • Report No.: LA-UR--97-3782
  • Report No.: CONF-9709108--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 658330
  • Archival Resource Key: ark:/67531/metadc709708

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • June 23, 2016, 10:35 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tonks, D.L.; Hixson, R.; Zurek, A.K. & Thissell, W. Spallation modeling in tantalum, article, September 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc709708/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.