Molecular dynamics simulation of high strain-rate void nucleation and growth in copper

PDF Version Also Available for Download.

Description

Isotropic tension is simulated in nanoscale polycrystalline copper with 10 nm grain size using large-scale molecular dynamics. The nanocrystalline copper is fabricated on the computer by growing randomly oriented grains from seed sites in simulations cell. Constant volume strain rates of 10-8 to 10-10 are considered for systems ranging from 10-5 to 10-6 atoms using EAM interatomic potential for copper. The spacing between voids for room temperature single crystal simulations is found to scale approximately as l{approximately}0. 005 Cs/gamma, where Cs is the sound speed and gamma is the strain rate. Below strain rates of about 10-9, only one void ... continued below

Physical Description

7 p.

Creation Information

Belak, J. July 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Isotropic tension is simulated in nanoscale polycrystalline copper with 10 nm grain size using large-scale molecular dynamics. The nanocrystalline copper is fabricated on the computer by growing randomly oriented grains from seed sites in simulations cell. Constant volume strain rates of 10-8 to 10-10 are considered for systems ranging from 10-5 to 10-6 atoms using EAM interatomic potential for copper. The spacing between voids for room temperature single crystal simulations is found to scale approximately as l{approximately}0. 005 Cs/gamma, where Cs is the sound speed and gamma is the strain rate. Below strain rates of about 10-9, only one void is observed to nucleate and grow in the 10 nm polycrystalline simulation cell. The growth of small voids is simulated by cutting a void out of the simulation cell and repeating the isotropic expansion.

Physical Description

7 p.

Notes

OSTI as DE98052166

Other: FDE: PDF; PL:

Source

  • Meeting of the topical group on shock compression of condensed matter of the American Physical Society, Amherst, MA (United States), 27 Jul - 1 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98052166
  • Report No.: UCRL-JC--126646
  • Report No.: CONF-970707--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 646467
  • Archival Resource Key: ark:/67531/metadc709659

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1997

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 6, 2017, 6:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Belak, J. Molecular dynamics simulation of high strain-rate void nucleation and growth in copper, article, July 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc709659/: accessed July 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.