RF System Concepts for a Muon Cooling Experiment

W.C. Turner, J.N. Corlett, D. Li, A. Moretti, H.G. Kirk, R.B. Palmer, and Y. Zhao

Accelerator and Fusion Research Division

June 1998

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory
is an equal opportunity employer.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
RF System Concepts for a Muon Cooling Experiment*

W. C. Turner, J. N. Corlett, and D. Li
Lawrence Berkeley National Laboratory
University of California,
Berkeley, California 94720

A. Moretti
Fermi National Accelerator Laboratory
Batavia, Illinois 60510

H. G. Kirk, R. B. Palmer, and Y. Zhao
Brookhaven National Laboratory
Upton, New York 11973

June 1998

Presented at the European Particle Accelerator Conference
Stockholm, Sweden, June 22 – 26, 1998

* This work was supported by the Director, Office of Energy Research,
Office of High Energy and Nuclear Physics, High Energy Physics
Division, of the U. S. Department of Energy, under Contract No. DE-
AC03-76SF00098.
RF SYSTEM CONCEPTS FOR A MUON COOLING EXPERIMENT*

A. Moretti, FNAL, Batavia, IL, USA
J.N. Corlett, D. Li, W.C. Turner, LBNL, Berkeley, CA, USA
H.G. Kirk, R.B. Palmer, Y. Zhao, BNL, Upton, NY, USA

Abstract

Concepts for the rf accelerating cavities of a muon cooling experiment are discussed.

1 INTRODUCTION

The feasibility of muon colliders for high energy physics experiments has been under intensive study for the past few years and recent activity has focused on defining an R&D program that would answer the critical issues.[1] An especially critical issue is developing practical means of cooling the phase space of the muons once they have been produced and captured in a solenoidal magnetic transport channel. Overall six dimensional phase space must be reduced by a factor of 10^10; normalized horizontal and vertical emittance must each be reduced two orders of magnitude, from ~5000πmm-mrad to ~50πmm-mrad. Because of the short muon decay time ionization cooling seems to be the only method that is fast enough; lengths of low-Z absorber alternate with longitudinal rf re-acceleration until the desired cooling is obtained. Initial studies have shown that the entire cooling channel might consist of ~20 modules, each cooling by a factor of ~2. In this paper we describe one of the modules that is under study for transverse cooling. The nominal muon momentum for this module is 163.1 MeV/c, β = 0.839.

A schematic of a 2m section (one period) of the transverse cooling lattice is shown in Fig. 1. On axis liquid H₂ absorbers with length 64cm provide nominal energy loss 21.6MeV which is to be regained by 1.25m of accelerating cells between absorbers. Beam transport is accomplished with alternating polarity 15T, 20cm bore superconducting solenoids outside the absorbers and matching superconducting solenoids with 38cm bore outside the rf cells. The rms and maximum orbit radii are 705μm and 15T, 20cm bore superconducting solenoids outside the absorbers and matching superconducting solenoids with 38cm bore outside the rf cells. The rms and maximum orbit radii are indicated and require a rather large 16cm aperture in the rf cells.

Having a 16cm aperture for the muon beam leads to rather low cell shunt impedance and very large power to achieve the necessary accelerating gradient if conventional disk coupled cavities are used. We have therefore taken advantage of the low scattering rates of muons in material to design pill box rf cells with thin metal(Be) windows covering the apertures. In addition to increasing the shunt impedance this has the added advantages of (1) putting the maximum accelerating gradient on the beam axis and achieving ~2 times the ratio of accelerating field to maximum field compared to conventional cells and (2) providing considerable freedom in the choice of rf phase advance per cell and cell coupling.

For the rf cell design we have considered traveling and standing wave cases and π, 2π/3, π/2 and π/3 rf phase advance per cell. In order to achieve reasonable power consumption with a traveling wave design required lowering the group velocity to the point where manufacturing tolerances became difficult. We were then led to a side coupled standing wave design with interleaved coupling to allow flexibility in choice of phase advance per cell. Fig. 2 illustrates the accelerating field for (a) π, (b) 2π/3 and (c) π/2 phase advance per cell. For (a) there is a single side structure coupling adjacent cells in the π mode. For (b) there are three side coupling structures connecting three interleaved chains of cells. The interleaved chains are phased 2π/3 apart, adjacent cells within a chain are in the 2π/3 mode. For (c) there are two side coupling structures connecting two interleaved chains of cells. The interleaved chains are phased π/2 apart, adjacent cells within a chain are in π mode. The transit time factor for these three cases is T = sin(ϕ/2)/sin(π/2) = 0.637, 0.827 and 0.90 respectively. For a given maximum accelerating gradient, case (c) has 1.4 times the accelerating gradient of (a) and in addition to having larger gradient than (b) has less coupling structure so we have chosen case (c) for most detailed study.

2 DESCRIPTION OF THE RF CAVITIES

Details of the interleaved π/2 cell structure are given in Fig. 3 and Table 1. The rf frequency has been chosen to be 805MHz, the frequency of the FNAL linac. The accelerating field is well approximated by the TM010 mode of a cylindrical pill box with the pill box radius R = 14.3cm determined by the first zero of J₁. The pill box length l = 7.82cm is determined by the phase advance and muon velocity; π/2 = (ω/βc)*l. The side coupling cells are coaxial LC resonators with geometry chosen to match the frequency of the pill box. The Be windows are 125μm thick; chosen to minimize multiple Coulomb scattering emittance growth but not be too fragile. The operating

*Supported by the US DOE under contract numbers DE-AC03-76SF00098, DE-AC02-76-CH00016 and DE-AC02-76-CH03000.
Figure 1: Schematic of a 2m section (one period) of a muon cooling lattice.

Figure 3: Details of the interleaved π/2 cell structure.
Figure 2: Illustration of the rf accelerating field for interleaved pill box cells with (a) π, (b) \(2\pi/3\) and (c) \(\pi/2\) muon phase advance per cell.

temperature of the cells has been chosen to be LN temperature to decrease the cavity losses by a factor of \(\sim 2\). This factor is indicated explicitly in the Q and shunt impedance figures given in Table 1. Sixteen of the pill box cells occupy each 2m section, one of which is indicated in Fig. 1. The total rf peak power for a 2m section is then 16x0.0782x8.3 = 10.4MW which is a good match to one FNAL linac klystron. The peak accelerating gradient 30MV/m is only slightly higher than the Kilpatrick gradient. The cells would be operated in a 15Hz, 28\(\mu\)sec pulse mode. A single transverse cooling stage would be 22m long; simulations of a such a 22m cooling stage have indicated reduction of transverse emittance from an input value 1400 \(\pi\)mm-mrad to output 650 \(\pi\)mm-mrad, growth of longitudinal emittance from 1000 \(\pi\)mm to 2040 \(\pi\)mm-mrad and overall reduction of 6D emittance by a factor of 2.2. Emittance growth due to scattering in the 176 125\(\mu\)m Be windows has been calculated to be \(\sim 20 \pi\)mm-mrad, small compared to the overall emittance reduction by ionization cooling.

3 NEAR TERM EXPERIMENTAL PLANS

An experimental apparatus has been constructed at BNL to measure the resistivity and thermal conductivity of Be samples at room and LN temperatures. A first design of the Be window has been carried out at FNAL. A 3 cell low power rf cavity has been designed at LBNL and will be used to test mechanical stability, Q and tunability at LN temperatures. A 3 cell high power rf cavity with a 5.5T superconducting solenoid will be fabricated at LBNL and tested at FNAL. The high power tests will investigate multipactoring, cavity coupling, window heating and mechanical stability. The time scale for these activities is \(\sim 2\) years. Beyond that it is planned to incorporate a 10m length of the rf cells described in this paper in a demonstration muon cooling experiment described in Ref. 2.

4 REFERENCES