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Abstract

QS-TI
A new method to generate chemical reaction network is proposed. The partic-

ukrity of the method is that network generation and mechanism reduction are

performed simultaneously using sampling techniques. Our method is tested

for hydrocarbon thermal cracking. Results and theoretical arguments demon-

strate that our method scales in polynomial time while other deterministic
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network generator scaIe in exponential time. This finding offe;5the possibil-

ity to investigate complex reacting systems such as those studied in petroleum

refining and combustion.
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I. INTRODUCTION

Motivated byapplications in synthesis design, combustion, andpetrochemicaI refining,

reaction network generation has been a prolific field of research for the past 25 years. As

reviewed in Ugi et al. paper,l reaction network generation is based on three types of tech-

niques. Empirical techniques, which strategies are based on data from reaction libraries,

semiformal methods based on heuristic algorithms, where reactions are derived from a few

mechanistic elementary reactions, and formal techniques, based on graph theory. Ugi et ai.

argue that formal techniques are general enough to be applicable to any type of reacting

system in organic or inorganic chemistry, furthermore formal techniques are the only meth-

ods capable of generating new reaction mechanisms, and therefore elucidating unresolved

chemical processes.

While formal techniques

ity to real reacting systems.

are robust their computational scaling limits their applicabil-

Indeed as it has been shown by several authors 1-9, for many

processes, the number of reactions and intermediate species that are created generally scale

exponentially with the number of atoms of the reactants. Two views of approaching this

problem have been proposed. One is to wait until sufficient computational power becomes

available. However, the exponential scaling of formal techniques makes it improbable that

we will ever reach enough computing power to solve the problem. The other view, which is

considered in the present paper, is to reduce the reaction mechanism. The question raised

when reducing mechanism is how to choose a reaction subset such that it describes correctly

the dynamic behavior of the studied reacting system. Reduction strategies in the area of

combustion modeling have been reviewed by Frenklach,5 these are quite general and applica-

ble to other systems. According to Frenklach there are five types of reduction strategies: 1)

global reduction, 2) response modeling, 3) chemical lumping, 4) statistical lumping, and 5)

detailed reduction. Global modeling techniques transform a complete reaction scheme into

a small number of global reaction steps. Global techniques comprise ad-hoc methods such

as empirical fitting, reduction by approximations, and lumping. All global techniques are
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specific to a particular problem and cannot be generalized. Response modeling techniques

consist of mapping model responses and model variables through functional relationships.

Generally, models responses are species concentrations and model variables are the initial

boundary conditions of the reacting mixture and the model parameters, such as rate coeffi-

cients, and transport properties. The solution mapping method provides a general procedure

to solve model response. In this method, model responses are expressed as simple algebraic

functions (usually polynomials) in terms of model variables. ”These algebraic functions are

obtained by using either computer experiments or experimental data. As with global tech-

niques, response modeling solutions are problem specific since they require data to build

algebraic functions. Chemical lumping and statistical lumping were both developed for

polymerization-type reactions. Chemical lumping models are used when a polymer grows

by reaction between the polymer and monomer species. The lumping strategy is guided

by similarity in chemical structure or chemical reactivity of the reacting species. The main

assumption of chemical lumping is that the reactions describing the polymer growth are

essentially the same and the associated thermochemical and rate parameters exhibit only a

weak dependence on the polymer size. Statistical lumping is used when polymer-polymer

interactions are of concern, such as in soot formation, silica powder growth, and metal oxide

growth. Such processes are described

the Smoluchowki equation encounters

memory and statistical approximation

by the Smoluchowski equation. The integration of

severe prohibitive demands on computer time and

of the equation have been proposed. Both chemical

and statistical lumping methods are specific to polymerization reactions. Finally, the de-

tailed reduction technique consists ,of identifying and removing noncontributing reactions.

An effective reduction strategy is to compare the individual reaction rates with the rate of

a chosen reference reaction. The reference reaction being for instance the rate limiting step

or the fastest reaction. The detailed reaction reduction approach is a general technique and

is a priori applicable to any reacting system.

The goal of this paper is to propose an original technique for reaction network generation

th;it is computationally tractable and general enough to be applicable to real processes,
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such as combustion, petroleum refining, and retrosynthesis. To achieve such a goal, formal

generation techniques must be used since with the above chemical processes not all reactions

are known and there is a need to create new reaction mechanisms. However, as mentioned

earlier formal techniques scale exponentially with the problem size and therefore reduction

methods need to be applied. As discussed earlier, the only reduction technique applicable

to general systems is the detailed reduction method. The caveat of the method however, is

that the entire network must be known prior to reduction.’ Therefore, network generation

and reduction cannot be processed in sequence if our goal is to derive a computationally

tractabIe technique.

In section II, we outline a new method where network generation and reduction are

performed simultaneously. More precisely we give four algorithms: deterministic-network-

generator (DNG), random-sampling-network-generator (RS’NG), concentration-sampling-

network-generator (CSNG) and MC-sampling-network-generator (kfCIVG). While the first

algorithm is deterministic and similar to techniques previously reported, the three sampling

algorithms are

time) methods

stochastic in nature and appear to be the first efficient (i.e., polynomial-

ever published for reaction network generation. Susnow et ai.8 propose a

technique similar to CSNG using rates instead of concentrations for mechanism reduction.

However, the computational scaling of Susnow et al. technique has not been reported,

furthermore, it is improbable that their algorithm scales in polynomial time since their

technique does not explicitly limit the number of species and reactions allowed in the

network. Our CSNG, and MCNG, algorithms require to compute on-the-fly the rate

constants of the reaction generated. In section III, we present a Quantitative Structure

Property Relationship (QSPR) approach to compute rate constants at low computational

cost. In section IV, we theoretically prove that our sampling generation-reduction algorithms

no longer scales exponentially with the probIem size but scales polynomiaIly. Finally, in

section 1-, in the context hydrocarbon thermal cracking, we test our sampling algorithms

versus experimental results and deterministic algorithms. We also compare the running-time

of our algorithms with the theoretical computational complexity calculations of section N’...
.
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II. METHOD

The proposed network generator is based on the Dugundji-Ugi theory.1° According to

this theory compounds and reaction are represented by bond electron (be–) and reaction

(r–) matrices. Inagiven be-matrix representing acompound theithrow (and column)is

assigned the ith atom of the compound. The entry bij (bji, z # j) of the ith row and jth

column of a be–matrix is the bond order of the covalent bond between atoms i and j. The

diagonal entry bij is the number of free valence electron for atom i. The reader may noticed

that the adjacency and connectivity matrices used in chemical information differ from the

be–matrices in their diagonal entries. The redistribution of valence electrons by which the

starting materials of chemical reactions are converted into their products are represented

by r–matrices. The fundamental equation of the Dugundji-Ugi model for any reaction

CY1+a2+..~.~~l+92+../3~ is B+R= E, where B and E are the be–matrices of

reactants and products, and R is the reaction matrix. The addition of matrices proceeds

entry by entry, that is, bij + rzj == ezj. Since there are no formal negative bond orders or

negative numbers of valence electrons, the negative entries of R must be matched by positive

entries of B of at least equal values. Within the above restrictions, Dugundji and Ugi proved

that be– and ~– matrices forms a free additive abelian group. 11There are two types of formal

reaction generators, RGB and RGR. RGB generators solve the fundamental equation for a

given B, while RGR generator solve the equation for a given R. Additionally, constraints

can be added while solving either RGB or RGR equations. Example of constraints are

maximum number of species and reactions generated, maximum species size, maximum

number of reactant per reactions, maximum number of lone electron, etc...

The generator proposed in this paper is of type RGB. Consequently, the generator builds

all the products that can be generated from a set of reactants, and a set of constraints. The

current Yersion of our generator is limited to monomolecular and bimolecular reactions but

could easily be extended to more complex reactions. Following Dugundji-Ugi methodology

reactants are represented by be–matrices. The constraints are entered by the user from the,
.

.
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list given in Table I. The studied chemical process is represented into the form of elementary

transitions, which are stored in a library of r–matrices. Elementary transitions are the elec-

tronic transitions that atoms of the reacting system can undergo. Each elementary transition

is composed of two configurations containing all the atoms participating in a reaction before

and after the reaction has taken place. Examples of elementary transitions and associated

r–matrices are given in Figure 1. Fontain and Reitsanl? have compiled the complete set

of elementary transitions that carbon atoms can take in organic reactions. This set is com-

posed of 324 transitions, however the set can be greatly reduced depending on the studied

process. For instance, it well known 13 that all hydrocarbon thermal cracking reactions can

be generated from the five elementary transitions listed in Figure 1. As another example

Susnow et U1.8are using 17 transitions to model methane combustion. The algorithms of

our generator are given next and are tested for thermal cracking of hydrocarbons in section

III.

A. Deterministic algorithm (DNG)

The input of our reaction network generator is a list of reactant species, a list of con-

straints, and a list of elementary transitions. The output is a network composed of all

possible species and reactions that can be created from the input. The algorithm described

below is illustrated for ethane thermal cracking in Figure 2. The algorithm starts by comput-

ing all the possible species (Lsl ) that can be derived by applying the elementary transitions

(Let) to the initial species (LsO) -while respecting the constraints. To prohibit duplication

of species, Lsl is composed of species that are not already present in Lso. When apply-

ing elementary transitions, one has to make the distinction between monomolecular and

bimolecular reactions. For each monomolecular elementary transition, Lsl is composed of

all the possible products that can be generated

all possible ways to the species of Lso. For each

the products derived by applying the elementary

6
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in Lso. The list of reactions Lrl is updated each time an elementary transition applies to

a species in Lso. Each reaction is represented by a n-tuples composed of the elementary

transition (from Let), the reacting species (from LSo), and the product species (from Lsl

or Lso). Once the list Lsl has been computed the algorithm proceeds and compute recur-

sively LS2, LSS, . . . . Lsz. Note that in order to compute Lsz (i > 1) one has to consider

monomolecular reactions only from the set Lsz_l since all monomolecular reactions from

the sets Lsi_21 LSi_3,... have already been computed in the previous steps. For the same

reason, the products of bimolecular reactions in Lsi are generated for “every possible pairs

of species having at least one element in Lsi_l. To avoid redundancies of species in the list

LSO,LS1,.,., Lsz, at any step i >1 a new species is added to Lsi only if the species is not in

LS2-1 U Lsi_2 U . . . U Lso. The process halts at any step i, where the corresponding lists of

species Lsi and reaction Lrz are empty. Since bimolecular reactions can potentially create

products of infinite molecular weight, in order to keep a finite network size one has to set

a limit for the maximum species size, let n be this limit. Note that with the exception of

polymerization reaction it is reasonable to assume that all species in a given network will be

limited in size. In turn, note that if the species have a limited size then the network genera-

tion algorithm is guaranteed to converge. Indeed, the maximum number of species, N, that

can be formed is bounded by the total number of molecular structures having a number of

atoms raging from 1 to the specified value of n. This latter number is equal to the sum of the

numbers of isomers containing 1,2, ..., n atoms. Finally, note that the number of reactions

is also finite and is bounded by N2 the maximum number of edges in the network (i.e.,

each species reacts with all the others). The network generator algorithm given in Scheme

I uses specific data structures to describe species and reactions. A molecular species s is

represented by a molecular graph G(s). This graph is in turn represented by a be—matrix.

.h elementary transition (et) is represented by two molecular graphs, G, (et) the electronic

configurations of the surrounding atoms before the reaction has taken place, and GP(et) the

electronic configuration after the reaction has taken place. From these molecular graphs one

constructs a r—matrix which is the difference between the two configurations (i.e. r —matrix
.

.
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corresponding to GP(et) – G,(et)). Finally, a reaction, r, is an n-tuple composed of a ele- 1

mentary transition (et), a list of reactant species (Lr(r)), a list of product species (LP(r)),

and a rate constant (k(r)). Additionally, the algorithm maintains several lists of species and

reactions. The list of reactants (Lso), the list of species (Lsz) and reactions (Lri) created

at the current step i, and the list of species generated at the previous step (Lsi-l). The

operator w adds a new species to any list Lsz if and only if the species is not already present .

in Lsi. Since species are represented by molecular graphs the operator M performs a series

of graph isomorphism checks between the species to be inserted and the species already in

the list. The molecular graph isomorphism routine used in this study has been published

elsewhere.14 The routine’s computational scaling is O (n2), where n is the number of atoms of

the species. The following scheme gives the deterministic network generator routines. The

functions species-constraints and rate-constant are rather trivial and not detailed in

scheme I. The function species-constraints verifies the constraints listed in Table I, the

function returns FALSE if any of the constraint is not verified and return TRUE other-

wise. The function rate-constant computes the rate constant of a given reaction using a

technique described in section III.

Scheme I:

determinist ic-network-generat or (Lso, Let, Ls, Lr)

input: -Lso : list of initial species

-Let: list of elementary transitions

output : -Ls : list of all species in network

-Lr: list of all reactions in network

local: -Lsi : list of species created at

step i

-Lsi_l : list of species created at

:
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step i – 1

-Lri : list of reactions created

at step i

begin

1. LSZ=LSO; Lr:=O; Lsi_l=LsO;

2. do

4. Lsi:=@; Lri=fJ;

5. generate-species-reactions

(Lsa-l, Ls, Let, Lsi, Lrz)

6. Ls := LS@LSi; Lr:=Lr&Lri;

7. Lsi-l Z= LSi;

8. until (Lsi = @ and Lri = 0)

end

generate-species-reactions (Ls1,Ls2,Let,Lsz, Lri)

input: -Ls1,Ls2: list of species

-Let: list of

output: -Lsi: list of

at step z

-Lri : list of

at step i

elementary transitions

species created

reactions created

local: -LGP: list of graphs

by generate-product

begin

returned

1. For all species s in Lsl do

2. For all reactions et~Let

with order(et) = 1 do

9



3. LGP:=0;

4. generate-product

(G(s), G.(et), Gp(e-t),LGP);

5. update-species-reactions

(LGP,er, S, 0, Lsil Lri) ;

6. done

7. done

8. For all species sl~Lsl and S2CLS2 do

9. For all reactions e-t~Let

with order(et)=2 do

10. LGP:= (1);

11. generate-product

(G(sI) u G(sQ), G,(e~), GJeO, LGPJ;

12. update-species-reactions

(LGp,er, sl,sz,Lsa, Lri);

13. done

14. done

end

generate-product (G(s), G,(et), Gp(et), ~Gp)

input: -G(s) : molecular graph of species s

-G,(e~): molecular graph

of the reactants of rection et

-GP(et): molecular graph

of the products of reaction et

output : -LGP: list of graphs obtained

after applying et to S

10
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local: -X: a graph

-G’ : a subgraph of G(s)

begin

1. For all G’~ G(s) s. t. G’=G,(et) do

2. X := G(s) – G’ + GP(et);

3. if (species-constraints(x) = TRUE) :

then LGP:= LGPItIX fi;

4. done

end

update-species-reactions (LGP,e~,Sl,Sz, Lsi,Lri)

input: -LGP: list of graphs returned

by generate-product

-et: elementary transition

-s1,s2: reactant species

output: -Lsi: list of species created

at step i

-Lri : list of reactions created

at step i

local: -LP : list of connected graphs

-k: rate constant

begin

1. For all graphs GPcLGP do

2. compute LP the list of

connected components of GP;

3. Lsi:=Lsi~LP;

4. k := rate-constant(et, S1,SZ,LP);

.
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5. Lri := Lri w (et, SI, s2, Lp, k);

6. done

end

B. Sampling algorithms ~~

Although the size of the network generated by the deterministic algorithm is finite due

the limited size of the species, as we already mentioned the number species in the network

grows exponentially with the with n, the number of atoms of the largest species. In fact,

as it will be seen in the last section, it is virtually impossible to generated thermal cracking

networks for species larger than heptane. As argued in the introduction there are several

techniques to reduce the network size. We propose in this section three network sampling

algorithms based on the detailed reduction idea: random-sampling, concentration-sampling,

and Monte-Carlo sampling.

[i) Random-sampling algorithm (RSNG). The algorithm is identical to the deterministic

network generator with the exception that at each step i the resulting species list Ls is

reduced to a size equal to a pre-defined number, lf~. The reduction is done at random, that

is, species are removed at random from Ls until the size of Ls is below iVf~.The algorithm

is given in Scheme II. The subroutine generate-species-reactions is given in scheme I.

Scheme II:

random-s ampling-network-generat or (Lso, Les, Ls, Lr)

input: -Lso : list of initial species

-Let: list of elementary transitions
,.
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output: -Ls: list of all species in network

-Lr: Mst of all reactions in network

local: -Lsi: list of species created at

step i

-Lsi-l : list of species created at

step 2–1

-Lri : list of reactions created at

step i

begin

1. LS:=LSO; LT:=O; Lsa_l=LsO;

2. do forever

4. Lsi :=0; Lri=@;

5. generate-species-reactions

(Lsi-l, Ls, Let, LSa,Lri) ;

if (Ls~ = @ ~d Lrz =0) then end fi

6. Ls := Ls~Lsi; Lr:=Lr@Lri;

7. reduce-rnechanism-rmdom(Ls, Lsi);

8. Lsi_l := Lsi ;

9. done

end

reduce-mechanism-rmdom(Ls, Lsj)

input: -Ls : list of species

-Lsi : list of species

created at step i

output: -Ls: reduced list of species

-Lsi : reduced list of species
,
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created at step i

const. : -M. : maximum number of species

allowed in Ls

begin

1. While (ILsI> M,) do

2. select s in Ls at random;

3. Ls := Ls_s; Lsi~=L~i_~;

4. done

end

(ii)

rithm,

Concentration-sampling algorithm (CSNG). With theconcentration-samplingalgo-

the reduction of the network is not performed at random but based on the species

concentrations. Furthermore, at’ each step i species are removed from Lsz and not Ls ti with

the previous algorithm. Hence, in the present case, the total number of network species is

not limited, but the number of species generated at each step is bounded by the predefine

value MS. The main assumption of this method is that if a species created at any given step

z has low concentration values over the reaction time, this species will generate products

with concentrations at most equal to that low value. Therefore, removing low concentration

species from the list L.si should have a neglectable effect on the final product distribution.

Note that this assumption is valid only if the species are consumed during the reactions

and do not act as catalysts. Indeed if a species is a catalyst even with low concentration,

this species could have a relatively large impact on the final product distribution. Hence,

catalytic species must be identified prior using this scheme. Note that for thermal crack-

ing reactions all the species participating to the reactions are consummed (cf. Figure 1),

and therefore, there is no need to identify catalytic species. Using the above concentra-

t ion assumption, the algorithm works as follows. At each step z the deterministic routine

14



generate-species-reactionisruntocomputethelistofnewspecies. At this point the

network is composed of all species in Lso U. . . U hi and associated reactions. Although the

network may not be completed, since the reaction rates are calculated on-the-fly (cf. section

III), the time evolution of the species concentrations is computed by solving the system of

differential equations associated with the partial network. In the present algorithm, we use

the Monte-Carlo Gillespie15 (MC-Gillespie) technique to solve the system. The MC-Gillespie

technique monitors the number of particles for each species versus time. The initial number

of particles of the reactants are computed from their initial concentrations (given by the

user), and the initial number MP of particule in the system. In the present paper, we are

using the MC-Gillespie technique at constant volume V, hence the initial number of parti-

cles is calculated from the particle density, and the reaction volume (both user inputs). The

MC-Gillespie technique is an exact method for numerical integration of the time evolution of

any spatially homogeneous mixture of molecular species that interact through a specified set

of coupled chemical reaction channels. The technique is based on a fundamental equation

giving the probability at time t that the next reaction in V will occur in the differential time

interval [t + ~, t + T + ch] and will be an ru reaction:

P(T,~)dT = ~1(T)~2(p/T)

where

PI(T) = ae-u’d~

and

“Pz(p/T) = aP/a

(1)

(2)

(3)

with

a=~pafi (4)
P

In eqs 2-4, avd~ is the probability, to first order in dr, that a reaction TP will occur in V

in the next time interval d~. The rate constant ky is related to aP in the different ways

depending if the reaction is monomolecular or bimolecular. For monomolecular reactions:.
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up= [s]kA (5)

where [s] is the concentration of species s, which, in the present case is simply the number

of particle s. For bimolecular reaction involving two species S1 and S2, we have:

Up = [S1][S2]~p/V

and for bimolecular reaction involving only one reactant

In order to integrate eq.

a random value I- according

up = [s]([s] – l)kp/V

1, Gillespie proposes the

(6)

spec~es:

(7)

following scheme. First generate

to PI(T) and second generate a random integer p according

to P2 (p/~). In our implementation of the MC-Gillespie technique, the random value r is

computed by simply drawing a random number rl from an uniform distribution in the unit

interval and taking:

In turn, the random integer p is

unit interval and by taking p the

T = (1/a) ln(l/r~) (8)

generated by drawing another random number r2 in the

integer verifying:

u-1 u

(9)
2/=1 V=l

In his original paper, 15 Gillespie has proven that expressions 8 and 9 are indeed cor-

rect to simulate stochastically the time evolution of homogeneous reactions. During the

MC-Gillespie integration, the a~gorithm retains for each species present in the network

the maximum concentration (i.e., number of particles) reached over the time period the

system is integrated. This operation requires to maintain two lists, L[s], the list of

species concentrations, and L[snQZ] the list of species maximum concentration. Species

are then sorted by decreasing concentration, the first M. elements of the sorted list

are kept in Ls while the other are eliminated. The algorithm is given in the follow-

ing scheme, the routine generate-species-reaction is given in scheme I. The ro~~ine

16



assign-hit ial-number-part icle is not detailed here, but returns the initial number of

particles for each reactants. This number is simply equal to the product of the maximum

number of particles (MP) by the initial concentration of the reactant. Both numbers are

user’s input.

Scheme III:

concentrate ion-sampling-network-

generator (Lso, Let, Ls, Lr)

input: -Lso : list of initial species

-Let: list of elementary transitions

output : -Ls : list of all species in network

-Lr : list of all reactions i,n network

local:

begin

1. Ls

2. do

4.

5.

6.

-Lsi : list of species created at

step i

-Lsi-l : list of species created at

step i–l

-Lri : list of reactions created at

step i

:= LSO; Lr :=0; Lsi-l .= LSO;

forever

Lsi:=O; L~i =@;

generate-species-reactions

(Lsi-ll Ls, Let, Lsi, Lr~) ;

if (Lsi=@ and Lri=@) then end fi

Ls:=LsWLsi; Lr:=LrULri;

,.
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7. reduce-me chanism-concentrat ion(Ls, Lsi ) ;

8. Lsi-l := Lsi ;

9. done

end

reduce-me chanism-concentrati on(Ls, Lsi )

input: -Ls : list of species

-Lsi : list of species

created at step i

output: -L’s: reduced list of species

-Lsi : reduced list of species

created at step i

local: -L[s] : list of species concentration

-L[sm.z]: list of species

maximum concentration

-n=: number of MC steps

-t : time

const. : -A’!!p: maximum number particles

-Mc : maximum number of MC steps

begin

1. L[s]:=O; L[smaz] :=@;

1. For all species SCLS do

2, if step(s)=O then

2. [s1 := assign-initial-number

-particles(s,it!lP);

2. [Smaz] := [s] ;

2. else

18



2.. [s] := o; [Smaz]:= o;

2. fi

2. L[s] := L[s] U [s] ;

2. L[sm.z] := L[sm.z] U [Smax] ;

2. done

2. t:=o; 72.:=0;

2. While

2.

2.

2.

2.

2.

2. done

2. While

2.

2.

2. done

end

nc < Mc do

t :=MC-Gillespie-step (Ls, L[s], LT,t);

For all species SELS do

if [s] > [s~~Z] then [s~~Z] = [s] fi

done

n= :=nc+l;

(]Ls;I> M.) do

find s~Lsi

having the lowest [s~.Z] value

Lsz=Ls_s; Lsi~=Lsi_s;

MC-Gillespie-step(Ls, L[s],Lr,t)

input: -Ls : list of species

-L[s] : list of species concentration

-Lr : list of reactions

-t : time

output : -L[s] : updated list of species

concentration

.
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-t : time after event occurs

begin

1. compute time ~ of next event using eq.8;

2. select reaction r in Lr occurring

at time t+~ using eq.9;

2. t:=t+r;

2. For all SC LT(T-) do [s]:= [s]-1 done;

2. For all s~LP(r) do [s]:= {s]+1 done;

2. return t;

end

(iii) MC-sampling algorithm

performat the same time both

(MCNG). The idea of the MC-sampling algorithm is to

the Monte-Carlo integration and the network generation.

The advantageof this technique isthat there are no assumptions regarding catalyst species.

As in the previous case, one starts with an initial reactant concentration given in the form

of numbers of particles. The initial total number of particles (hfP) is calculated from the

particle density and reaction volume. At each step, the set of new species is computed using

the generate-species-reactions routine, but in the present case these species are generated by

applying the elementary transitions only for species having non-zero concentration (i.e., set

Ls’ in Scheme IV). The concentrations of the new species are set to zero and updated using

the MC-Gillespie integration step, The process is iterated until the number of step exceed the

pre-defined MC value. In

is given in scheme I, and

Scheme IV:

the following scheme, the routine generate-species-react ions

the routine MC-Gillespie-step can be found in scheme HI.

MC-sampling-network-generator (Lso, Les, Ls, Lr) .
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.

input: -Lso : list of initial species

-Let: list of elementary transitions

output: -Ls: list of all species in network

-Lr: list of all reactions in network

local: -Lsi~ list of

step i

-Lri : list of

step i

-L[s] : list of

-L~* ; list of

species created at

reactions created at

species concentration

species with

non-zero concentration

-t : time

const. : -Mp : maximum number particles

-Mc : maximum number of MC steps

begin

1. LS:=LSO; L[s] :=0; Lr=O;

2. For all species SGLS do

3. [s] := assign-initial-number

-particles(s,ItfP) ;

4. L[s] := L[s] U [S] ;

5. done

6. t=o; 2=0;

7. While i<LIC do

8. Lsi:=@; L~i:=@; LS*:=O, z:=i+l;

9. For all SCLS do

10. if [s] =0 then Ls* :=Ls*–s fi

11. done

.
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12. generate-species-reactions

(Ls*, Ls*, Les, i, Lsz, Lri) ;

13. Ls := Ls&Lsi; Lr:=Lr&Lri;

14. For all s G Lsi do [s] := O done

15. t := l!C-Gillespie-step (Ls, L[s], Lr, t);

16. done

end

III. RATE CALCULATIONS

Rate constants are calculated for each new reaction generated in the routine

generate-species-reactions. Because generate-species-reactions is a basic routine

called by of all the network generation algorithms, we have implemented a fast techniques

to compute the rates. Rate constants are estimated for each reaction usinga quantitative

structure property relationship (QSPR) based on the reaction type taken for the elementary

transitions listed in Table I, and on the Wiener indices of the reactants and products. The

Wiener index is simply the sum of the number of bonds between all pairs of atoms in a

given molecule or radical. Thus, Hz has a Wiener coefficient of 1, the methyl radical has

a Wiener coefficient of 9, methane has a wiener coefficient of 16, etc. For large (> CA)

hydrocarbon species that exhibit multiple isomeric forms, the Wiener coefficient is lowest

for highly branched isomers, and largest for the linear isomer. Thus, the Wiener coefficient

reflects the extent of branching of a given CZH2Z+1radical stoichiometry. Since the stability

of hydrocarbon radicals decreases with branchinglG in the order R3C > R2CH > RCH2 >

CH~, one would expect the reactivity of the radicals

these two facts together leads to the conclusion that

with radical activity, with higher Wiener coefficients

CXH2Z+I radical composition.
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the Wiener coefficient should correlate

indicating higher reactivity for a given
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The QSPR used here is based on experimental kinetic data taken from Allara and Shaw~7

for each of the reactions given in Figure 1. For a given reaction type, the preexponential

factor is taken as the average of the measured preexponential factors for each experiment

reported in Allara and Shaw. The activation energy is fitted to the expression:

E== E.+ cLXW, + f322Wp (lo)

where 230, a, and /3 are fitting parameters and ZW’Tand DVP are the sums of the Wiener

coefficients of the reactants and products, respectively. The form of eq. 10 was chosen rather

than the more general form:

(11)

where the ~i’s and @i’sare now individual coefficients for each reactant or product. This

choice was made to avoid the necessity of sorting the reactants and products to ensure that

the appropriate coefficient is applied. For example, a hydrogen transfer reaction where reac-

tant 1 is an alkane and reactant 2 is a radical would require that the algorithm differentiate

between the radical and the alkane to make sure that Wl is multiplied by al rather than C22.

A similar consideration applies to the products. The computational cost of performing this

sorting was deemed unjustified given the uncertainties in the available experimental data

and the resulting unavoidable uncertainties in the QSPR estimations (see below).

Results from fitting eq. 10 to each reaction are given in Table III. Note that for two

of the reactions (addition and hydrogen abstraction) the data is divided into multiple sets

rather than being fit as a whole. This division is based on inspection of the data in Allara

and Shaw, which reveals that for these two reactions the rate preexponential factors and/or

activation energies clearly vary with reactant type. For example, the kinetic parameters of

hydrogen abstraction from H2 clearly differ from those for hydrogen abstraction from an

a]kane. Consequently Table III lists eight different reactions vs. only five in Table II.

Figure 3 shows a plot of the predicted rate constants for each reaction vs. the mea-

sured rate constants. In general, the predicted rate constants are within about a half an.
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order of magnitude of the measured values. Unfortunately, the available experimental data

also displays variations of this magnitude, so better accuracy cannot be expected from the

QSPR. It is nevertheless interesting to note that for the addition reactions and hydrogen

transfer from alkanes to aIkyl radicals, Figure 3 shows very little variation in the predicted

rate constants. This result suggests that the Wiener coefficient is not a good structural

parameter for developing a QSPR for these reactions, and that other approaches will need

to be considered to obtain better rate constant estimates. Despite these limitations, the

QSPR presented here is still accurate enough to demonstrate the performance and scaling

of our algorithm, and allow for qualitative predictions of product distributions.

IV. THEORETICAL COMPUTATIONAL COMPLEXITY

In this section we

algorithms, and prove

analyse the upper bound theoretical time-complexity of the above

that the three sampling algorithms can be run in polynomial time.

Theoretical complexity results are summarized in Tables III and IV. The reader should refer

to the Glossary for the notations used in this section. Practicle results, i.e., running time

complexity are given in the next section.

For hydrocarbon cracking reactions, the maximum number of atoms for each elementary

transition is r s 3 and the number of elementary transitions is R = 8 (cf. Table 1). As a

general rule r and R are always bounded and will be taken as constant in our complexity

calculations.

We first evaluate the time-complexity of the procedure generate-product. The procedure

performs a subgraph isomorphism “between a given species and an elementary transition.

Since each elementary transition contains at most r atoms, there are r! ways of mapping

G,(et) onto each atom of G(s). G(s) comprises at most n atoms, therefore, the number

of subgraph isomorphism performed is nr!. Let us assume that all tries pass the subgraph

isomorphism and the constraint tests. In such an instance, nr! graphs are added to the

list L~P, and consequently, ILGPI ~ nr! = O(n). Each graph added to LGP is tested for
,

.
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isomorphism with a complexity of 0(n2). The constraints listed in Table I can be checked in

O(n) steps, consequently the time-complexity of the generate-product routine is nr!(n + TZ2)

= 0(n3). Furthermore, the number of graphs returned by generate-product is ILGP\ ~ m-!

= O(n).

Next, we evaluate the time-complexity of update-species-reactions. As seens above,

generate-product may return nr! graphs, these graphs in turn may contain at most n con-

nected components (i.e., ]LP] = n). Therefore, the maximum number of species and reaction

that can be created by update-species-reactions is ILGPIILPI ~ n2r! = 0(n2). Note that we

choose an upper bound for lLri I equal to the upper bound for ILsi 1, since every reaction in

Lri contains one element of Lsi, and for every element of Lsi there exist a reaction in L~i.

Note however that we do not necessarily have lLsil = [Lril due to the isomorphism checks

performed when inserting elements in Lsi and Lri. The routine update-species-reactions

first compute all the connected components of the graphs of LGP. It is well known that the

connected components of a graph can be found

isomorphism for all species and reactions created

reactions. Isomorphism between species can be

in O(n) steps. 18 The routine then checks

and compute the rate constants of all new

achieved in O(n2), isomorphism between

reactions can be performed in a constant time (i.e., O(l)) since reactions are represented

by n-tuple. As seen in the previous section, rate constants are calculated using the Wiener

indices of the reactants and products of the reactions. Calculating a Wiener index requires

O(n2) steps for a species containing n atoms. 19Thus, the overall time-complexity for update-

species-reactions is ILGPIILPI(O(n) + O(n2) + O(1) + O(n2)) = O(n4).

The routine generate-species:re.action distinguishes monomolecular reactions from bi-

molecular reactions. For monomolecular reactions all species in Lsl = Lsi_l and all elemen-

tary transitions Let are sent to generate-product and update-species-reaction. As computed

above, the maximum number of species and reactions returned by update-species-reaction

is n2r!. Therefore, the number of species created through monomolecular reactions and re-

turned by generate-species-reaction is bounded by \Lsi-l IlLetlILGP]\Lp\= iVi_1Rn2r!. For

bimolecular reactions the same operations are performed for all pairs of species between Lsj_l
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and LsO,i-l, and the number of species created is maximized by lLsO,i_ll{Lsi-l llLetl lLGPl{Lpl

= N0,;-lNz-lRn2r!, Consequently, thenumber ofspecies created at step iis bounded by

lLs~l < N&~Rn2r! + No,@72-@12r! =O(No,i_lNi-In2). Generate-species-reactionscalls—

the routines generate-product and update-species-reactions for both mono- and bimolec-

ular reactions. The two routines scale respectively O(n3) and O(n4). Consequently the

time-complexity is [Ls~-~1[Letl(O(n3) + O(n4)) = 0(N~_ln4)for monomolecular reaction

and lLso,i_l IlLsz_l [lLetl = 0( No,i_lNi_ln4) for bimolecular reactions. The later being the

dominant term the overall time-complexity of generate-species-reaction is 0(No,i-lNi-ln4).

Let us now evaluate the number of iterations in the deterministic-network-generator

routine. Let k be the maximum valence allowed, usually in organic chemistry k s 4. It will

take at most kn steps to remove all the bonds in Lso and it will take at most kn steps to

create the largest structure comprising n atoms. Therefore, all accessible isomers comprising

1 to n atoms can be created in 2kn steps, and the maximum number of iterations of the

main routine is bounded by 2kn = O(n). Note that we can write No,i-l s 2kn < Ni >

where < iVi > is the average size of the list Lsi. Reversely, the upper bound for ILsI is

N=2kn<Ni>, and< Ni>= N/(2k72). The deterministic-network-generator routine

performs O(n) calls to generate-species-reactions, O(n) isomorphism checks between Lsi

and Lso,i, and O(n) insertions of Lri in Lro,i. Therefore, the upper-bound time-complexity

is n(No,iNi_ln4 + No,iNi_ln2 + No,iNi-l) ~ n(2kn < Ni > N/(2kn)n4 + 2kn < Ni >

N/(2kn)n2 + 2kn < Ni > N/(2kn)) = N/(2kn)Nn5 + i’V/(2kn)Nn3 + N/(2kn)Nn ~

N2n4/2k + N2n2/2k + N2/2k = O(N2n4). This complexity is not polynomial since N is

bounded by the number of isomers comprising 1,..., n atoms, which increases exponentially

with n.

We now consider the sampling routines. At any

the size of the list LsO,i_l below a predefine value

procedure reduce-mechanism-random performs Ill,

given step i, the random-sampling keep

A&. Thus, we have lLso,i-l I s M,. The

random selections in Lso,i–l M Lsi. AS

seen above, we have [Lsil < Ni–1Rn2r! + No,i_lNi.-1Rn2r! < Ni_1Rn2r! + ikISNi_1Rn2r!=

M: O(n2), since in the present case both No,i_l and Ni_l are bounded by kf~. Note that we.
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also have ILTZI s lf~ O (rz2), since lLsi I and lLri I have the same upper bounds. Furthermore,

lLsO,i-l w Lszl < \LsO,i_ll + Ihzl < M. + M: O(n2) = M: 0(n2). Consequently, Al.—

random selections in LsO,i_l w Lsi will be performed with a time-complexity M: 0(n2).

Let us recall that the complexity of generate-reactions-species is No,i-lNi-1.R~!n4, which

in the present case reduces to M$M~Rr !n4 = M~O(n4). Following the same reductions,

the overall complexity of the random-sampling-network-generator algorithm is bounded by:

n(No,iNi_1n4 + No,iNi_1n2 + No,iNi_l + M: 0(n2) = M~O(n5)+ itfjO(n3).

Concentration-sampling differs from random-sampling since the size of the list Lso,i-l is

not restrained. Instead, at any given step i,the sizes of the individual Iists Lso, ..., Lsi–l are

kept below a predefine value hf.. Thus, we have l.Lso,i_l } = No,i-l = ilf,. We also have

lLsi[ < Ni_lRn2r! + No,i_1Ni_1Rn2r! = Ni-1Rn2r! + 2kn < Ni > Ni_1Rn2r! = M: 0(n3),—

since in the present case < Ni > and Ni–l are bounded by Ill.. Furthermore, lLso,i–l L+J5si]

~ lLso,i_l I + lLsi] ~ 2kn < Ni > + M: 0(n3) = M: 0(n3). In turn, the complexity of

generate-reactions-species is No,i_1Ni_1Rr!n4,which reduces to 2knM~M~R~!n4= M~O(n5).

Concentration-sampling also differs from random-sampling with the reduce-mechanism

routine, which calls the MC-Gillespie-step. The MGGillespie-step routine first compute

the time r of the next event, then the reaction occuring at time ~, and finally the routine

updates the species concentrations. Computing the time of next event is performed using

eq. 8 and requires lLriI s M: 0(n3) steps. Selecting the next reaction is also achieved in

Ibil < M: 0(n3) steps. Finally, updating the species concentrations is done in a constant—

time since there are at most 4 species (i.e. .2 reactants and 2 products) participating to a

reaction. The overall time-complexity of MC-Gillespie-step is M: 0(n3).

The MC-Gillespie-step is called by the reduce-mechanism-concentration routine. There

are three loops in this routine. Clearly, the complexity of the first loop is lLso,i-l & Lsil

= M; 0(n3). The second loop calls ibfCtimes the Monte-Carlo-Gillespie-step routine, and

update the maximum concentration for each species in Lso,i_l u Lsi. The MC-Gillespie-step

routine has a complexity of M: 0(n3). Updating the maximum concentration is achieved

in II{: 0(n3). Therefore the complexity of the second loop is MCM~ 0(n3). The third,-
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loop searches the M. maximum concentrations over time of all species in Lso,i-l & Lsi, its

complexity is h4~O(n3). The overall time-complexity of reduce-mechanism-concentration is

therefore: (Al: + kfClkf~ + Al:) O(n3). Thus, the complexity of the concentration-sampling-

network-generator algorithm is bounded by: n(No,;Ni_1n4 + No,iNz_1n2 + No,iNi_l + (M:

+ A4?cfw:+ M:) 0(723)) = A’f:o(nb) + (Mc+ M. + I)&f: 0(7-/).

The main difference between MC-sampling-network-generator and the other algorithms

is that the number of atoms remains the same, &.?P.Hence, tie number of species with non-

zero concentration is at most MP (i.e., ILs* I s MP). The routine generate-species-reactions

is called for the list Ls*, consequently, its complexity is N*N*Rr!n4 = M~O(n4). Note also

that ILsi] the number of species returned as well as ]Lri] the number of reactions are bounded

by lLs*llLs*llLetlnr! [Lpi < M~Rn2r! = M~O(n2), The number of species before the first

iteration of MC-sampling-network-generator (i.e., the number of reactants) is at most ik?P.

The number of species after the first iteration is lLsO& LS1I s MP+ M~O(n2) = M~O(n2). It

can easily be verified that after i iterations the number of species ILso,iIwill remain bounded

by iMjO(n2). After MCiteration we have ILsI s McM~O(n2) and lLrl s McMjO(n2) since

lLrl has the same upper bound than \Ls]. Hence, the complexity of the isomorphism checks

in MC-sampling-network-generator is ILsIILsZI 0(n2) = MCM~O(nG), while the complexity

of MC-Gillespie-step is I.Lrl s MCM~O(n2). Since the number of iteration is equal to iklC,

the overall complexity of MC-sampling-network-generator is ill~Ikf~ O(nG)

V. HYDROCARBON THERMAL CRACKING

The goal in this section is to probe how well the sampling algorithms predict the kinetics

of hydrocarbon thermal cracking. More precisely, we want to verify if the sampling algo-

rithms can reproduce the results obtained with the DNG deterministic network generator.

Prior testing our sampling algorithms it is worth checking how our DNG algorithm performs

versus experimental results. Although match with experimental data is not our priority here,

we want at least to verify that we capture the kinetics of hydrocarbon cracking.
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(i) DNG versus experimental results. Figures 4 and 5 give the product distribution of

ethane and butane using the

measurements demonstrates

only qualitative agreement.

DNG algorithm. Comparison of the results with experimental

that the generated reaction networks and rate constants give

In the case of ethane thermal cracking at 1118 K and an ethane pressure of 38 Torr,

our DNG technique predicts ethylene and hydrogen in near~y equal amounts as products,

with only a small amount of methane formation, regardless of conversion. Experimentally,20

significant amounts of methane are formed, the ethylene yield falls from 100% to 7570 of the

hydrogen yield as conversion increases, and small amounts of acetylene and butadiene are

formed. The failure of our DNG technique to predict the latter two experimental results is

entirely due to the absence in our model of reactions that convert ethylene into acetylene

and butadiene. Inclusion of these reactions is expected to rectify this inaccuracy. The low

methane yield predicted by our simulation is likely due to inaccuracies in the QSPR used to

calculate reaction rates, as our simulation generates all of the reactions commonly believed

to occur during ethane thermal cracking.

For n-butane thermal cracking the agreement between experiment and DNG output

is also qualitative. While our DNG technique predicts the formation of all of the major

products observed experimentally, 21 the relative amounts of the products do not agree welI.

In particular our DNG technique underpredict the amount of methane and overpredict

amount of hydrogen. As is the case for ethane, the DNG algorithm generates all of

important species and reactions “for thermal cracking, leading to the conclusion that

the

the

the

discrepancies in product distribution with experiments are the result of inaccuracies in rate

parameters predicted from our QSPR.

As noted in Section III, the inaccuracies in rate parameters predicted from our QSPR are

in large part a reflection of uncertainties in experimental measurements of rate parameters,

so that better agreement with experimental product distributions cannot be expected. It

should be possible to empirically optimized either the QSPR or individual rate parameters
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to obtain better agreement with experiments. However, for the purposes of this study, we

believe that the qualitative agreement between experiment and simulation, and the fact that

the

the

algorithms generate all of the required species and reactions, sufficiently demonstrates

correct performance of the algorithms.

(ii) RSNG, CSNG amd MCNG versus DNG. The RSNG algorithm was tested with

butane cracking for three different M. values. Let us recall that RSNG selects at random

ikf~ species at each generation step disregarding rates and concentration considerations.

It is therefore not surprising to find descrepencies between RSNG and DNG results since

intermediate species and even final products may be removed arbitrarily during the selection

process. None of the product distributions obtained with M. = 8, 10, and 16 in Figure 6

match the deterministic results. These findings indicate that RSNG is not a valid technique

to sample reaction mechanism.

Figure 7 gives the product distribution for butane cracking using the C’SNG algorithm

with three different M, values. Let us recall that C’SNG selects at each generation step the

M. most abundant species. M. = 6 gives a different product distribution that DNG, M, = 7

gives a product distribution close to DNG except for propylene which is overpredicted.

M, = 8 gives the same product distribution than DNG. Not surpringly, we find that for

all values MS ~ 8 the products distributions of DNG and C’SNG are identical. Indeed,

according to the C’SNG assumption (cf. section II) additional species of low concentration

have only a minor effect on the final product distribution. kf~ = 8 is therefore the treshold

above which all CSNG product distributions are correct. In Figure 8, the above observation

is verified for all hydrocarbons up to 24 atoms. As in can be seens in Figure 8a, for all

tested hydrocarbons a treshold for M, exist above which there is no difference in product

distribution between DNG and CSNG. Furthermore according to Figure 8.b, this trehold

scales 2/3 (n – 2) where n is the number of atoms of the tested hydrocarbon. All these

results lead to the conclusion that C’SNG can be used to generate reaction network for

thermal cracking provided that M. ~ 2/3 (n – 2).
,

.
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For MCNG only two parameters can be varied, Mp the initial number of particles, and

AfCthe number of steps on the Monte-Carlo integration. As shown in Figure 9, for butane

cracking, a perfect match with DiVG is obtained for &fP = 10,00 and a fairly good match

for Mp = 2,000. In both cases we have Mc = 10,000. With lower Mp values, butane de-

composition is slower, this is due to the fact that not all of the 145 reactions for butane

decomposition are used, slower butane decomposition is especially noticable when the initial

number of particle is lower than the number of reactions. Mp”= 2, 000 and Mc = 10,000

appear to be the thresholds above which lfCNG is in good agreement with DNG, addi-

tional tests (up to up to 24 atoms) indicate that these numbers are independent of the tested

hydrocarbon.

(iii) Computational complexity for hydorcarbon thermal cracking. Figures 10,11, and 12

give the computational scaling of the DNG CSNG and MCNG algorithms for hydrocarbon

thermal cracking up to 24 atoms. RSNG was not tested for computational scaling since we

have shown that it is not an appropriate technique for network generation. In all cases

the hydrocarbon results agree well with the theoretical results listed in Tables III and IV.

With DNG, the number of species and CPU time scale exponentially with n (the maximum

number of atoms per species allowed). While C’SNG and i14C’NG give product distribution

identical to DNG, in both cases, the number of species generated and the CPU time scale

polynomially with n.

VI. CONCLUSION

We have introduced here a new technique where network generation and reduction are

performed simultaneously. Theoretically, we have proven that the deterministic network

generators based on the Dugundji-Ugi methodology have a number of species/reactions and

CPU running time that scale exponentially. We have also proven that our concentration

sampling and Monte-Carlo sampling algorithms scale polynomially while giving identical
,

.
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results than deterministic generators. All our theoretical findings are in agreement with

results obtained for hydrocarbon thermal cracking. The computational running time scaling

we found with the concentration sampling algithm is nG/106 and nG/104 with the Monte-

Carlo sampling algorithm, where n is the maximum species size. Although the polynomial

exponant is rather large these results enables one to study organic reactions on compounds

comprising up to 50 atoms in few CPU hours using standard desktop technology. Whereas

improvement in the scaling exponant need to carried out, our sampling algorithms already

offer the possibility of generating complex reaction networks such those studied in combution

and petroleum refining.

GLOSSARY

DNG : Deterministic network generator algorithm.

RSiVG :

CSNG :

Random sampling network generator algorithm.

Concentration sampling network generator algorithm.

MCNG : Monte-Carlo sampling network generator

e, : Maximum number of lone electron per species.

eP : Maximum number of lone electron per atom.

Ls : List of all species produced by algorithm.

algorithm.

Lr : List of all reactions produced by algorithm.

L(s) : List of all species concentration.

Ls* : List of all species with non-zero concentration.

Ls~ : List of reactants.

Lsi : List of all species produced by algorithm at step i.
.
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*

Lri : List of all reactions produced by algorithm at step i.

Lso,i : List of all species produced by algorithm up to step i.

.L~o,i : List of all reactions produced by algorithm up to step i.

n : Maximum number of atom per species.

N : Maximum number of species produced by algorithm. “

N : Number of species with non-zero concentration.

No : Number of reactants.

Ni : Maximum number of species produced by algorithm at step i.

No,i : Maximum number of species produced by algorithm up to step i.

MC : Maximum number of Monte-Carlo steps.

Lf. : Maximum number of species created per generation steps.

LfP : Maximum number of particles for Monte-Carlo integeration.

o ~.. : Maximum reaction order.

r : Maximum number of atoms per elementary transition.

R : Maximum number of elementary transitions.
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Table I: Network generator constraints

~etwork constraints

T

R

omax

M.

MC

MP

Species constraints

n

es

eP

DNG

co (3)

m (8)

2 (2)

n/a

n/a

n/a

m (50)

m (2)

2 (1)

Cf. Glossary for notations.

bon thermal cracking.

Maximum value allowed

RSNG

m (3)

cc) (8)

2 (2)

100,000 (20)

n/a

n/a

co (50)

m (2)

2 (1)

CSNG

co (3)

cc) (8)

2 (2)

100,000 (20)

.00,000 (10,000;

.00,000 (10,000;

m (50)

00 (2)

2 (1)

MCNG

C@(3)

-m (8)

2 (2)

n/a

.00,000 (10,000;

.00,000 (10,000;

1,000,000 (50)

1,000,000 (2)

2 (1)

Valuesin parentheses are actual values taken forhydrocar-

.
%
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Table II: Rate parameters for hydrocarbon thermal cracking reactions

Reaction log A E. a P

(s-’) (kcal)

Bond homolysis 16.802 86.950 -0.02199 0.02890

~–scission 13.392 35.144 -0.01736 0.02468

H addition to olefins 9.924 3.252 0.07558 -0.07045

CZH2Z+1 addition 7.893 7.826 -0.00246 0.00060

to olefins

I abstraction from alkanes 8.365 11.560 -0.02767 0.02780

by CZH2Z+1 radicals

to form alkanes

I abstraction from alkanes 10.986 5.481 0.34390 -0.3919(

by H radicals

to form alkanes

H abstraction from H2 9.323 9.853 -0.29900 0.28200

by CZH2Z+1 radicals

to form alkanes

Radical recombination 9.843 0 0 0

Cf. equation 10 for notations.
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Table III: Number of species: upper bounds

DNG RSNG CSNG MCNG

lLsil O(No,i-lNi-1n2) Iuf~O(n2) MjO(n3) MjO(n2)

lLsO,i-ll O(No,i-l) M, iM8 iMjO(n2)

ILsI O(N) M. M.O(n) MCM~O(n2)
L

Cf. Glossary for terminology.

Table IV: Computational time-complexity: upper bounds

DNG RSNG CSNG MCNG

generate-product O(n3) O(n3) O(n3) O(n3)

update-species-reactions O(n4) O(n4) O(n4) 0(n4)

$enerate-species-reactions O(No,i_1Ni_1n4) M~O(n4) M~O(n5) MjO(n4)

MC-Gillespie-step n/a n/a &f~O(n3) MCM~O(n2)

reduce-mechanism n/a MjO(n2) (M’. + MCM;s n/a

+Mj)O(n3)

full algorithm O(N2n4) M~O(n5) M~O(nG) MCMjO(nG)

+ M@(n3) + (M. + MS+ l) O(n4)

Cf. Glossary for terminology.
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Figure Captions

Figure 1: Example of (Z)e-) and(r-) matrices forelementary transitions of hydrocarbon

thermal cracking. a) (be–)matrices for methane and methyl. b) (r–)-matrices for the

5 elementary transitions of hydrocarbon thermal cracking.

Figure 2: The 3 first steps of ethane thermal cracking using the 5 elementary transitions

given in Fig. 1.

Figure 3: Predicted vs. experimental rate constants for hydrocarbon thermal cracking.

Figure 4: Ethane thermal cracking with DNG. T = 1118K, initial ethane concentration

= .000545 M.

Figure 5: Butane thermal cracking with DNG. T = 863K, initial butane concentration =

.001 M.

Figure 6: Butane thermal cracking with RSNG. T = 863K, initial butane concentration

= .001 M. a) RSNG with Afs =8, b) RSNG with M. = 10, c) RSNG with AL?.= 16.

Figure 7: Butane thermal cracking with CS’NG. T = 863K, initial butane concentration

= .001 M. a) RSNG with It4s = 6, b) RSNG with llf~ = 7, c) RSNG with’lf. = 8.

Figure 8: Product distribution RMSD between DNG and CSNG. a) RMSD for individual

hydrocarbons for different M, values. b) MS vs. reactant size (n) for which RMSD =

O. The equation of the straight line is kf~ = 2/3 (n – 2)

Figure 9: Butane thermal cracking with iMC’NG. T = 863K, initial butane concentration

= .001 M. a) itfP = 100, b) iklP = 500, c) JIP = 2,000, d) MP = 10,000 (all major

products are shown). In all cases iklC’NG was run until convergence, that is for at

most AfC= 10,000 steps.

40

Figure 10: DNG computational scaling.



Figure 11: CSNG computational scaling for M$ = 2/3 (n – 2).

Figure 12: MCNG computational scaling for MP = 2,000 and MC = 10,000.

,
.
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FIGURES
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6

1

09

0.0

0.7

0.6

03

0.4

03

02

Da

0

butane

ethane
m etbane

< pmpylme

0 .00E+OO 2DOE+05 4BDE+05 6D0E+05 8 DOE+05 1 DOE+06

t (s)

a)
1 T I

09

Oa

02

OJ

0

etnykne

OOOE+OO 2DOE+04 4 .00E+04 6L10E+04 BJIOE+04 1n0E+05

‘(s) b)

09

0.8 II

0.7

0.6

0.5

0.4

03

02

01

0

Hbutane

alykne

H:

metha”!
em.”,

OJ30E+O0 2JIOE+04 4.00E+04 600E+04 8noz+04 1 .00z+os

t (s)

c)

47

.



Fig. 7

1

09

08

0.7

0.6

05

0.4

03

02

01

0

❑ ethane

3A OE+01 4 AOE+O1 5 .80E+01 630E+01 730E+01 8SOE+01

t (s)

a)

09

OA

0.7

0.6

05

0.4

03

02

0.1

0

\

butane

0 DOE+OO 5DOE+03 1 J30E+04 150E+04

1

09

0s

0.1

0.6

05

0 .?

0.3

02

02

0

t (s)

b)

\

bum.

o DOE+OO 5DOE+03 1 J30E+04 1 -50E+04

t (s)

c)

4s

“.



.

Fig. 8

30
butane

■ . .

25 - 1

20

10

16

14

12

z“’ 10

8

6

4

2

0

20

10

5

0

pencme

x w \

propane

o 2 4 6 8 10 12 14

MS

;

o 5 10 15 20 25 30 35

n

b)

49



?

Fig. 9
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Fig. 11
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Fig. 12
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