In-Situ Radiation Detection Demonstration Final Report

PDF Version Also Available for Download.

Description

The Department of Defense (DoD) has hundreds of facilities where radioactive materials have been used or are being used, including firing ranges, low-level radioactive waste disposal areas, and areas where past activities have resulted in environmental contamination. Affected sites range in size from a few acres to square miles. Impact to the DoD comes through military base closure and release to the public. It is important that radioactive contaminants are remediated to levels that result in acceptable risk to the public. Remediation requires characterization studies, e.g., sampling and surveys, to define the affected areas, removal actions, and final confirmatory sampling ... continued below

Physical Description

42 p.

Creation Information

MOHAGHEGHI,AMIR H.; REESE,ROBERT; MILLER,DAVID R.; MILLER,MARK LAVERNE & DUCE,STEPHEN June 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Department of Defense (DoD) has hundreds of facilities where radioactive materials have been used or are being used, including firing ranges, low-level radioactive waste disposal areas, and areas where past activities have resulted in environmental contamination. Affected sites range in size from a few acres to square miles. Impact to the DoD comes through military base closure and release to the public. It is important that radioactive contaminants are remediated to levels that result in acceptable risk to the public. Remediation requires characterization studies, e.g., sampling and surveys, to define the affected areas, removal actions, and final confirmatory sampling and surveys. Characterization of surface contamination concentrations has historically been performed using extensive soil sampling programs in conjunction with surface radiation surveys conducted with hand-held radiation monitoring equipment. Sampling is required within the suspect affected area and a large buffer area. Surface soil contaminant characterization using soil sampling and hand held monitoring are costly, time consuming, and result in long delays between submission of samples for analysis and obtaining of final results. This project took an existing, proven radiation survey technology that has had limited exposure and improved its capabilities by documenting correlation factors for various detector/radionuclide geometries that commonly occur in field surveys. With this tool, one can perform characterization and final release surveys much more quickly than is currently possible, and have detection limits that are as good as or better than current technology. This paper will discuss the capabilities of a large area plastic scintillation detector used in conjunction with a global positioning system (GPS) to improve site characterization, remediation, and final clearance surveys of the radioactively contaminated site. Survey results can rapidly identify areas that require remediation as well as guide surgical removal of contaminated soil that is above remediation guidelines. Post-remediation surveys can document that final radiological site conditions are within the remedial action limits.

Physical Description

42 p.

Notes

INIS; OSTI as DE00759451

Medium: P; Size: 42 pages

Source

  • Other Information: PBD: 1 Jun 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2000-1449
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/759451 | External Link
  • Office of Scientific & Technical Information Report Number: 759451
  • Archival Resource Key: ark:/67531/metadc709558

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 12, 2017, 3:34 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

MOHAGHEGHI,AMIR H.; REESE,ROBERT; MILLER,DAVID R.; MILLER,MARK LAVERNE & DUCE,STEPHEN. In-Situ Radiation Detection Demonstration Final Report, report, June 1, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc709558/: accessed June 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.