Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite supported-copper. Progress report, April 1--June 30, 1996

PDF Version Also Available for Download.

Description

The authors have continued the investigation of the adsorption of NO on the Cu/{gamma}-alumina samples and have begun the study of the interaction of NO with sulfated Cu/{gamma}-alumina. The interaction of NO with a sulfated surface is extremely important, since the copper sites in the most popular NO reduction catalyst, Cu/ZAM-5, also adsorb SO{sub 2}, and the catalyst is poisoned by SO{sub 2}. It may be possible to determine whether the poisoning mechanism is due to a chemical effect, or some other effect, and investigate measures which might alleviate the deleterious effects of surface sulfation on the adsorption/reduction process. The ... continued below

Physical Description

6 p.

Creation Information

Mitchell, M.B. & White, M.G. December 31, 1996.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The authors have continued the investigation of the adsorption of NO on the Cu/{gamma}-alumina samples and have begun the study of the interaction of NO with sulfated Cu/{gamma}-alumina. The interaction of NO with a sulfated surface is extremely important, since the copper sites in the most popular NO reduction catalyst, Cu/ZAM-5, also adsorb SO{sub 2}, and the catalyst is poisoned by SO{sub 2}. It may be possible to determine whether the poisoning mechanism is due to a chemical effect, or some other effect, and investigate measures which might alleviate the deleterious effects of surface sulfation on the adsorption/reduction process. The results for NO interacting with the sulfated surface do not appear to result in the formation of any new species, but do show a dramatic change in the relative amounts of the NO species formed on the surface. The sulfation of the copper species apparently forces the copper species to remain as Cu{sup 2+}, which gives rise to a strong band at 1850 cm{sup {minus}1}, shifted to lower frequency from the 1863 cm{sup {minus}1} absorption found for the unsulfated catalyst, but which is still probably due to the formation of a Cu{sup 2+}/NO complex, given the small frequency shift. Two other infrared absorption bands observed for NO adsorbed on the un-sulfated catalyst are observed in the current study only weakly, and are due to the formation of adsorbed NO{sub 2}, the NO oxidation product formed when Cu{sup 2+} is reduced to Cu{sup +}, and to the Cu{sup +}/NO{sup {minus}} complex. The relatively intense absorption due to the Cu{sup 2+}/NO complex and the weak absorptions due to adsorbed NO{sub 2} and the Cu{sup +}/NO{sup {minus}} complex indicate that little reduction of the copper has taken place. Stabilization of the Cu species as Cu{sup 2+} by the sulfate apparently prevents participation of the surface copper species in the redox cycle. To the authors` knowledge this is the first reported infrared spectroscopic study of NO interacting with a sulfated Cu/{gamma}-alumina catalyst.

Physical Description

6 p.

Notes

OSTI as DE98057966

Source

  • Other Information: PBD: [1996]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98057966
  • Report No.: DOE/MT/92017--06
  • Grant Number: FG22-92MT92017
  • DOI: 10.2172/665878 | External Link
  • Office of Scientific & Technical Information Report Number: 665878
  • Archival Resource Key: ark:/67531/metadc709503

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Jan. 16, 2018, 9:06 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mitchell, M.B. & White, M.G. Simultaneous SO{sub 2}/NO{sub x} abatement using zeolite supported-copper. Progress report, April 1--June 30, 1996, report, December 31, 1996; Georgia. (digital.library.unt.edu/ark:/67531/metadc709503/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.