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DISCRETE ORDINATES TRANSPORT METHODS FOR PROBLEMS 

WITH HIGHLY FORWARD-PEAKED SCATTERING 

bY 

SHAWN DANIEL PAUTZ 

ABSTRACT 

We examine the solutions of the discrete ordinates ( S N )  method for problems with highly 

forward-peaked scattering kernels. We derive conditions necessary to obtain reasonable 

solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. We also analyze 

the acceleration of the iterative solution of such problems and offer improvements to it. 

We extend the analytic Fokker-Planck limit analysis to the SN equations. This analysis 

shows that in this asymptotic limit the SN solution satisfies a pseudospectral discretization 

of the Fp equation, provided that the scattering term is handled in a certain way (which we 

describe) and that the analytic transport solution satisfies an analytic Fp equation. Similar 

analyses of various spatially discretized SN equations reveal that they too produce solutions 

that satisfy discrete FP equations, given the same provisions. Numerical results agree with 

these theoretical predictions. 

We define a multidimensional angular multigrid (ANMG) method to accelerate 

the iterative solution of highly forward-peaked problems. Our analyses show that a 

straightforward application of this scheme is subject to high-frequency instabilities. However, 

by applying a diffusive filter to the ANMG corrections we are able to stabilize this 



xvi 

method. Fourier analyses of model problems show that the resulting method is effective 

at accelerating the convergence rate when the scattering is forward-peaked. Our numerical 

results demonstrate that these analyses are good predictors of the actual performance of the 

ANMG method. 
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CHAPTER I 

INTRODUCTION 

Over the last several decades a variety of deterministic numerical schemes have been 

developed to approximately solve the linear Boltzmann transport equation. These methods 

have been developed primarily to solve neutron transport problems. Most neutron transport 

problems of interest are characterized by isotropic or mildly anisotropic scattering. For 

such problems numerical transport schemes have become increasingly accurate and robust; 

many are applicable to multidimensional problems. Advances have also been made in the 

development of acceleration methods that are effective at increasing the convergence rate of 

the iterative solution of such problems. 

The transport equation is not limited to the description of mildly anisotropic neutron 

transport; it also is a valid description in most cases of the transport of neutrons in highly 

anisotropically scattering media and for other types of particles such as electrons and photons. 

In many physical problems the scattering is highly “forward-peaked”, which means that the 

average scattering angle is very small. Such problems include the transport of charged 

particles such as ions and  electron^,'-^ high-energy x-rays and gamma rays: visible 

light in certain media, and very high-energy  neutron^.^ These types of physical problems 

are encountered in such situations as inertially and magnetically confined fusion, medical 

physics,”8 electron microscopy:. lo shielding of electronic components in spacecraft,” ion 

implantation in electronics,12 atmospheric and interstellar transport of light, 13-16 gamma-ray 

well-logging, l7 and accelerator-driven processes. 

This dissertation follows the style and format of Nuclear Science and Engineering. 
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The nature of these problems impacts the accuracy and efficiency of the deterministic 

transport schemes that are used to model them. One generally needs to use higher-order 

angular quadratures (i.e* finer angular resolution) and to calculate many more scattering 

moments than are needed to obtain a sufficiently accurate solution in most neutron transport 

problems. For charged-particle calculations the energy loss per scattering event can be small, 

requiring a finer energy group structure. These requirements directly impact the amount of 

memory and CPU time needed, especially in multidimensional calculations. Furthermore, 

most acceleration methods developed for neutron transport problems lose their effectiveness 

when the scattering is forward-peaked, which greatly increases the number of iterations 

required to sufficiently converge the solution. 

As a consequence of these computational demands the development, analysis, and 

application of deterministic transport methods for forward-peaked scattering problems has 

lagged behind advances in methods for isotropic and weakly anisotropic problems. Most 

applications have been limited to one-dimensional t r a n ~ p 0 r t . l ~ ~ ~  However, the development 

of much faster computers with more memory and of more efficient transport schemes has 

made multidimensional calculations more feasible?&’* One particular development, the 

angular multigrid (ANMG) acceleration method of Morel and Mante~ffel?~ greatly reduces 

the number of iterations required to solve forward-peaked problems, although it has only been 

developed for one-dimensional geometry. The prospect of a greater range of forward-peaked 

scattering problems that can be feasibly modeled, especially in multidimensions, creates the 

need for a better understanding of the accuracy of these methods and for more effective 

acceleration methods. 
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The purpose of this work is twofold. First, we will study the accuracy of common 

deterministic transport methods when they are applied to highly forward-peaked scattering 

problems, both in one-dimensional and multidimensional geometries. Specifically, we 

will extend the asymptotic Fokker-Planck analyses of Pomraning30 to discrete ordinates 

(commonly caIled S N )  transport schemes?' These analyses will reveal the conditions 

under which discrete ordinates methods produce reasonable solutions to forward-peaked 

scattering problems. Second, we will analyze the convergence rate of transport iterations for 

multidimensional forward-peaked scattering problems and make improvements by extending 

the ANMG method to the multidimensional setting. Our analysis will show the stability 

and effectiveness of the ANMG scheme. In situations where it is unstable we will propose, 

analyze, and test modifications that stabilize this acceleration method without unduly 

compromising its effectiveness. 

This work contributes the following new results to the body of knowledge about 

computational methods for forward-peaked transport problems: 

1. We show that if the scattering source is calculated in a specific manner, then the 

discrete ordinates solution limits to the solution of a discretized Fokker-Planck equation in 

the same asymptotic limit in which the exact transport solution limits to an exact Fokker- 

Planck solution. This is a highly desirable result that provides a measure of confidence in the 

application of discrete ordinates methods to forward-peaked problems. 

2. We show that if the scattering source is calculated in that same specific manner, then 

several common methods for spatially discretizing the discrete ordinates equations produce 

solutions that limit to the solutions of spatially and angularly discretized Fokker-Planck 
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equations. This again is a highly desirable result that increases confidence in the use of 

discrete ordinates methods for forward-peaked problems. 

3, We show that if the scattering source is calculated in the "standard" discrete ordinates 

manner, then the discrete ordinates solution will in general be poor or will not exist in the 

Fokker-Planck limit. 

4. We analyze in two dimensions the ANgular MultiGrid (ANMG) method previously 

developed and tested for ID problems. We find that the scheme is unstable in 2D for 

the discrete ordinates method with no spatial discretization and with fine-mesh spatial 

discretization. 

5 .  We devise a diffusive filter for the ANMG corrections and show that this successfully 

stabilizes the method in 2D. We show that the filtered ANMG method is superior to the 

diffusion synthetic acceleration (DSA) method that is commonly used in iterations for 

forward-peaked problems. 

The remainder of this work is organized as follows. In Chapter 11 we will review the 

asymptotic Fokker-Planck analysis of Pomraning, as applied to analytic transport, and extend 

it to the discrete ordinates transport method. We will obtain conditions under which the 

discrete ordinates method produces reasonable solutions in this forward-peaked limit. In 

Chapter 111 we will extend these Fokker-Planck analyses to spatially discretized SN methods 

in one and two dimensions and also obtain necessary and/or sufficient conditions under which 

reasonable solutions are obtained. In Chapter IV we will review and analyze the effectiveness 

of common acceleration methods for highly forward-peaked scattering problems. We will 

extend the ANMG method to multidimensions and develop modifications necessary to ensure 

its stability and effectiveness. In Chapter V we will extend the ANMG method to spatially 



discrete problems and analyze its stability and effectiveness. In Chapter VI we will present 

numerical results that support the results of the Fokker-Planck and ANMG analyses. Finally, 

in Chapter VII we offer some concluding remarks and suggestions for future work. 
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CHAPTER 11 

FOKKER-PLANCK ANALYSIS OF THE SPATIALLY ANALYTIC 

TRANSPORT EQUATION 

Previous studies have examined the convergence properties of solutions to discrete 

ordinates ( S N )  discretizations of the transport eq~ation.~’-~~ Numerous studies have also 

examined the convergence and stability properties of spatially discretized S,  equation^.^*-^^ 

Generally speaking, given fixed cross sections and geometry the discrete solutions converge 

to the exact solutions as the spatial and angular discretizations are made increasingly fine, 

at least for “reasonable” discretization methods. The key feature of these studies is that 

material properties (i.e. cross sections) are held constant while the discretizations are made 

vanishingly small. Given sufficient refinement of the discretization, one can achieve an 

arbitrarily small error in the discrete solution. 

A related question is how the accuracy of a particular discrete transport method is 

related to the cross sections, given fixed problem geometry and a fixed angular and spatial 

discretization. A scaling parameter, E ,  is introduced into the cross section definitions such 

that each cross section varies like E to some power as E + 0. For many “scalings” 

of physical interest the analytic transport solution limits to the solution of some simpler 

~ p e r a t o r . ~ ’ . ~ ~ ~ ~  In this same limit various transport discretization methods may or may not 

produce solutions that limit to discretized solutions of the simpler analytic operator. For 

example, numerous spatial discretization schemes have been examined in the thick diffusion 

limit~8~50~52,63~67-84 These schemes are considered “good” in this limit if their solutions satisfy 



7 

valid discretizations of the diffusion equation; their accuracy is identical (in this limit) to the 

accuracy of the discrete diffusion solution. 

The object of the present study is to determine and assess the behavior of discrete 

ordinate transport solutions in the limit of forward-peaked scattering, namely the Fokker- 

Planck limit. A scaling parameter, S, will be used to define a cross section scaling such that the 

scattering becomes increasingly forward-peaked as S + 0. Experience in numerical methods 

a n a l y s i ~ ~ ~ - ~ ~  would suggest that the asymptotic form of the error of the discrete ordinates 

method could be described by E = 0 (N"Sj), where N is the order of the angular quadrature 

and i and j are constants that are determined by the particular discretization method and 

by the unscaled cross sections. The studies mentioned in the first paragraph indicate that i 

will be negative for any reasonable type of quadrature. The question we wish to address is 

what j is (presuming the form of the error given above is valid), given a particular transport 

discretization and a cross section scaling parameter S that describes how forward-peaked the 

scattering is. 

Rather than addressing the above question directly, we wish to break this question into 

two parts, as is done in the thick diffusion limit studies. For problems involving certain kinds 

of very highly forward-peaked scattering the solution of the Fokker-Planck (FP) equation has 

been found to be a good approximation to the analytic transport s o l u t i ~ n . ~ ~ ~ ~ * * ~ ~  The first part 

of our accuracy question is to find the conditions under which discretizations of the transport 

equation yield "reasonable" discretizations of the Fokker-Planck equation. In these cases 

the two-part question of the accuracy of various transport discretizations is reduced to the 

presumably simpler second part, the question of the accuracy of the corresponding Fokker- 

Planck discretizations. Our study will not actually address this reduced problem. 
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This chapter examines the fully analytic transport equation and the spatially analytic 

discrete ordinates equations in the limit of forward-peaked scattering (the Fokker-Planck 

limit). We derive conditions under which the equations asymptotically yield solutions that 

satisfy a (discretized) Fokker-Planck equation. 

II.A. Analytic Transport 

In this section we briefly review Pomraning's asymptotic analysis3' of the fully analytic 

transport equation in the Fokker-Planck limit, which we restrict to the monoenergetic case. 

The analytic transport equation in general geometry is: 

where 

1 
r r 

-1 4n 

and where os ( po) is the cross section for scattering through an angle whose cosine is po. The 

parameter G,, is a normalization factor that depends on n, m, and the normalization chosen 

for the definition of Y,, (0), and the parameters mL and m H  depend on the geometry. For 

Cartesian geometries mL and m H  are given by 
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Following P ~ m r a n i n g , ~ ~  we make the following definitions and scalings: 

1 - Po y = -  
6 '  

where & is the average scattering cosine, & S n  and &a are 0 (l), S and y are small, and ( 0 )  

indicates a typical value. We require that A (r) and B (r) be 0 (l), i.e. that 1 - (r) and 

(1 - pof2 (r) scale with 6 and y, respectively. The idea is to examine what happens to the 

solution as S approaches zero. Physically, this corresponds to a diminishing distance between 

scatters but also a diminishing average scattering angle. These are balanced such that ctr is 

0 (1) and independent of 6. 

We rewrite the integral for osn in terms of y and expand P, ( p o )  in a Taylor series about 

po = 1: 
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By making use of the following identities for Pn, 

we can rewrite Eq. (5) as 

n ( n + l )  
2 '  

PA (1) = 

Rewriting Eq. (7) in terms of po  and performing the integration yields the following 

asymptotic form for Osn: 

L J 

Substitution of this expression into the transport equation leads (after some manipulation) to 

the following intermediate result: 

Equation (9) is an equivalent form for the transport equation that is obtained when the 

scattering cross section is asymptotically made forward-peaked. When the preceding analysis 

was previously reported by P ~ m r a n i n g , ~ ~  he obtained the Fokker-Planck equation by noting 
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that the term in braces in Eq. (9) is identically zero. In order to illuminate the discrete analyses 

in subsequent sections, however, we wish to proceed by a slightly more formal route. Our 

goal is to discern how the transport solution, $ (r, St), behaves in the limit as S tends to zero. 

Therefore we propose the asymptotic ansatz: 

( 1 Ob) - (0) (1) &(2) + . . . Pnm - Vnm+@nm+ nm 

where we will be primarily interested in the leading-order term. We insert this ansatz into Eq. 

(2) and consider terms of 0 (1) to find: 

We insert the ansatz into Eq. (9) and consider terms of 0 (E1) to find: 

We have not included an 0 (y) term in Eq. (12), since it is easily shown that y 3 0 as S 3 0, 

i.e. that there are no 0 (1) components in y. Equations (1 1) and (12) define the transformation 

from p(O) to ?,!I(') and its inverse. While Eqs. (1 1) and (12) are rather obvious in the problem 

we are now analyzing, we will see later that their discretized counterparts play key roles in 

the behavior of discrete solutions. In particular, we will find that for some discretizations the 

D and A4 operators are not inverses, and hence the discrete versions of the two equations 

might not both be satisfied (we will note exceptions later). Thus, in such cases we will have 

a contradiction, implying that the asymptotic ansatz is not valid. 
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The 0 (6) terms in Eq. (2) yield 

cpti (r) = / d$2’Y,*, ($2’) (r, $2’) = (D$(’)) . 
nm 

4n 

The 0 (1) terms in Eq. (9) yield 

We have included the 0 (y/6) term in Eq. (14) as if it were 0 (1); this is not necessarily true 

and will be discussed momentarily. Note that we have not directly obtained an expression 

for $(I) and cp(l) that is analogous to Eq. (12). However, Eq. (13) and the fact that M = 

D-’ require such an expression for consistency. Therefore the term in braces in Eq. (14) 

disappears. 

Now we can use the identity: 

to rewrite the summation on the right hand side of Eq. (14), thereby obtaining a Fokker- 

Planck equation with an extra 0 (y/S) term: 
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The 0 (y/S) term in Eq. (1  6) is significant. It is a function only of the scattering kernel. The 

Fp equation is not an asymptotic limit of the transport equation unless the scattering kernel is 

such that y -+ 0 more rapidly than 6 -+ 0, i.e., such that 

as ,!io -+ 1. The Henyey-Greenstein kernel,13 for example, does not have this limit. For more 

discussion see references 30 and 6 1. 

II. B. Discrete Ordinates 

We now turn our attention to the discrete-ordinates discretization of the transport 

equation. The standard discrete-ordinates version of the transport equation (1) is (with the 

asymptotic form of usn inserted): 
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where 

K 

k=l 

Here the wk and f &  are the quadrature weights and angles, respectively, of a quadrature 

of order N .  In standard quadratures K = N in lD, K = N ( N  + 2) /2 in 20, and 

K = N (N + 2) in 3D. Note that the scattering order in Eq. (18) is truncated at N - 1. 

Manipulation of Eq. (18) yields the discretized (in angle) version of Eq. (9): 

We insert the asymptotic ansatz of Eqs. (10) into Eq. (1 9) and consider terms of 0 (1) to find: 

We insert the ansatz into Eq. (20) and consider terms of 0 (6- l )  to find: 

where there is no 0 (y) term for the reasons discussed in the previous section. Equations (21) 

and (22)  are always satisfied if DN and MN are inverses of each other. Unlike in analytic 
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transport, however, this may not be true. In one-dimensional slab and spherical geometry it 

will be true only if the quadrature set exactly integrates polynomials of degree 2N - 1, as 

is the case with the Gauss-Legendre (GL) set. In standard multidimensional quadrature sets 

DN and MN are generally not one-to-one and onto operators, in which case they cannot be 

inverses of each other. If DN and MN are not inverses of each other, then Eqs. (21) and (22) 

may not be consistent (with possible exceptions discussed below); if they are inconsistent 

then the asymptotic ansatz of Eqs. (10) is not valid. In such a case there is no 0 (1) solution 

to Eqs. (18) and (19). 

Assuming that DN = M;', and thus that Eqs. (21) and (22) are consistent, then the 

0 (6) terms in Eq. (19) yield: 

The 0 (1) terms in Eq. (20) yield: 

The scattering term on the left side of Eq. (24) will disappear only if 
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where 

This is already satisfied by the (assumed) condition DN = Mi'. Equations (15) and (24) 

thus yield: 

where we define 4") (r, St) to be the ( N  - 1)-order polynomial interpolant through the 

points { f&, 4") (r, f&)} in one-dimensional slab and spherical geometry (the definition in 

multidimensional geometry will be described below). Thus, assuming that 0 (y/S) + 0 as 

6 + 0, Eq. (27) is a "pseudospectral" discretizationg0 of the angular variable in the exact 

FP equation. (Pseudospectral methods use collocation to determine coefficients in a global 

function expansion.) 

The above discussion indicates that the transformation from discrete values to angular 

moments and back to discrete values should be the identity. If Eqs. (19) and (26) define 

the discrete-to-moments and moments-to-discrete transformations, then we will not have the 

identity unless the quadrature set is Gauss-Legendre in one-dimensional slab or spherical 

geometry. Given a different quadrature set and/or multidimensional geometry, then, the SN 

method may not limit to a discretization of the FP equation unless Eq. (19) andor (26) is 

replaced. 
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Morelg1 reached the same conclusion via a completely different analysis, and offered 

suggestions for replacing the offending equation(s). The simplest suggestion in one- 

dimensional slab and spherical geometry is to use for Cpno the exact moments of the (N - 1)- 

order polynomial, 6 , that goes through the points { slk, 6 (r, Oh)} ; i.e. to solve Eq. (2) 

exactly instead of using Eq. (19), thereby redefining DN. Morel labeled this “Galerkin” 

quadrature, since he derived it by means of a Galerkin weighting method. The use of the 

exact moments causes Eq. (25) to be satisfied regardless of quadrature set, and Eq. (27) then 

follows. 

In multidimensional geometries the Galerkin quadrature has a more complex definition. 

Recall that DN and A& are not one-to-one and onto in standard multi-dimensional quadrature 

sets. For example, level symmetric quadrature sets of order N have N ( N  + 2) /2 and 

N ( N  + 2) quadrature points in two and three dimensions, respectively, whereas there 

are N ( N  + 1) /2 and N 2  spherical harmonics of order N - 1 or less in the respective 

dimensions?2 In order to satisfy Eq. (25) in all circumstances we must first increase 

the number of spherical harmonics in our flux expansion by using harmonics of higher 

orders. Morelg1 and Reedg3 proposed suitable spherical harmonic interpolation spaces for 

multidimensional geometries. For two-dimensional geometries the following interpolation 

space is suggested: 

OLrn<n,  i f O < n < N - 1  
ynm : 

0 < m odd 5 N ,  i f n = N  
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The interpolation space suggested for three dimensions is: 

-n<m<O { ynm' ( a n d O < m o d d s  N 

I - ( N  + 1) 5 m even < 0, 

i f 0  5 n 5 N -  1, 

i f n = N  

if n = N + 1 

The Galerkin quadrature is then defined by adjusting the limits of the summations in Eq. (26) 

in order to augment k i p ,  and then redefining DN = ill;'. As in the one-dimensional case 

Eq. (25) will be satisfied regardless of the discrete angle set when the Galerkin treatment 

is used, and Eq. (27) then follows, where 4") (r, SZ) is now defined as the spherical 

harmonic interpolant (corresponding to the selected interpolation space) through the points 

{ f l k  ' $O) (r, w}. 
We note that the use of the Galerkin quadrature allows the selection of a greater variety of 

discrete angle sets in Eq. (18) since the corresponding quadrature weights (if they are defined) 

are not actually used. For example, in problems involving normally incident beams one can 

specify better boundary conditions with the Lobatto quadrature set, since this set includes 

the point p = 1. In these same problems one can define sets that are highly biased toward 

particular directions. Furthermore, it may be possible to implement adaptive quadratures 

more easily. 

More can be said about the effects of using a non-Gaussian or non-Galerkin quadrature 

to evaluate Eq. (19). Let us define the scattering ratio matrix C by 
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where D is the discrete-to-moments matrix, M is the moments-to-discrete matrix, and is a 

diagonal matrix whose entries are the scattering coefficients {osn} in the order and frequency 

corresponding to their respective moments in the other matrices. If exact integrals are used 

then D = M-l, and C will be a diagonal matrix whose entries are the scattering ratios 

{asn/ot}. In a non-multiplying medium each diagonal term (and hence each eigenvalue of 

C )  will be non-negative and will not exceed unity. If, however, inexact integrations are used, 

not only will C differ from X/ot,  but there is also the possibility of introducing one or more 

eigenvalues whose absolute values exceed unity. This is physically equivalent to artificially 

introducing multiplication into the medium. Depending on the amount of leakage present, 

Eqs. (18) and (19) then may not have a steady-state solution, certainly not in the limit as 

6 t 0. This inconsistency is clearly unacceptable when a steady state solution is known to 

exist. 

We remark that the condition D = M-I is certainly sufficient for obtaining the 

correct FP limit, but it is not strictly necessary. We need only to satisfy the condition that 

( I  - M D )  @ = 0 in order to satisfy Eqs. (21), (22), and (25), i.e. that be in the null space 

of I - MD. If M D  # I ,  then certain angular eigenmodes cannot be present in a stable 

solution. It is entirely possible that the proper selection of boundary conditions and sources 

could result in a solution that does not contain any of the unstable modes. Alternatively, one 

could filter out the unstable mode components of the scattering source; this would stabilize 

the solution, but this will yield a different solution than that obtained when exact integrations 

are used. Ow recommendation is to avoid these complications altogether by simply using the 

exact inverse of M .  
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In summary, the discrete ordinates discretization of the transport equation (1) yields a 

pseudospectral discretization of the Fokker-Planck equation under the scaling defined in the 

previous section, provided that the Fokker-Planck equation is the asymptotic limit in the 

analytic case and that the scattering source is calculated carefully (in a nonstandard way, 

in general). The "nonstandard" scattering source may be obtained by means of the Gauss- 

Legendre quadrature set, by forming the interpolant of the angular flux and calculating its 

exact moments, or perhaps by a number of other ways. A different, albeit stable, solution 

may be obtained by suppressing the unstable eigenmodes of the scattering source (which 

would limit to a discrete FP solution with a reduced angular function space), but we do not 

recommend this alternative when inherently stable and less drastic approaches exist. 
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CHAPTER m 

FOKKER-PLANCK ANALYSIS OF TME SPATIALLY DISCRETIZED 

DISCRETE ORDINATES EQUATIONS 

In the previous chapter we analyzed the asymptotic behavior of the spatially analytic 

transport and discrete ordinates equations in the Fokker-Planck limit. In this chapter we 

extend our asymptotic analysis to include spatial discretizations. We will study the diamond 

difference (DD), the linear discontinuous (LD) and the linear moments (LM)  method^^^.^^ 

as examples of spatial discretizations of the transport equation in one-dimensional slab 

geometry. In two-dimensional Cartesian geometry we will examine several related finite 

element methods on rectangles: the bilinear discontinuous (BLD), the lumped bilinear 

discontinuous (LBLD) and the simple corner balance (SCB)  method^.^'*^^*^^ For the methods 

analyzed we find that if a reasonable Fokker-Planck limit is obtained in the spatially analytic 

case, then a reasonable limit is also obtained in the spatially discrete case. 

I1I.A. Slab Geometry 

1II.A. 1 .  Diamond Difference 

We begin with the DD-S, discretization of Eq. (I), with the asymptotic cross sections 

fromEq. (8): 
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where fi is the cell-average value of f: 

1 
 AX^; 

fi = - / dxf ( 2 ) .  

We remark that the spatial mesh stays fixed in our analysis, which means as S -+ 0, osoiAxi 

increases and otr,iAxi does not change. 

We insert the asymptotic ansatz of Eqs. (10) into Eqs. (31) and consider the terms of 

0 (1) in Eq. (3 Id) to find: 

N 

k=l 

We consider terms of 0 (6-l) in Eq. (3 1 a) to find: 

N-1  

n=O 

As we have already discussed in the previous chapter, if DN # MS1 then Eqs. (33) and (34) 

may be inconsistent, in which case there is no 0 (1) solution to Eqs. (3 1). 



Assuming that DN = M;', then the 0 (6) terms in Eq. (31d) yield: 

k= 1 

The 0 (1) terms in the remaining Eqs. (3 1) yield 

The term in braces in Eq. (36a) disappears because we have assumed that DN = M;'. 

Equations (15) and (36a) thus yield: 

assuming that y/6 + 0 as 6 --f 0. The boundary conditions are given by the leading order 

terms in Eq. (3 1 c): 
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Thus, given that DN = MG1 and that y has no 0 (6) components, the leading-order DD-SN 

solution satisfies a DD-pseudospectral discretization of the Fp equation. (It is no surprise that 

these conditions are required, since they were required even without spatial discretization.) 

The asymptotic boundary conditions are identical to the ones specified for the unscaled 

problem. 

III.A.2. Linear Discontinuous 

The scaled LD-SN discretization of Eq. (1) consists of Eqs. (31a), (31d), and the 

following: 

where f: is the first spatial moment of f in a cell: 

"i+ + 
x - xi 

 AX^ Axil2 
f? = - 3 / dx [-] f (XI 

x i - f  
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By means of the same asymptotic analysis as before we find that DN = A4;' is a sufficient 

condition for there to be an 0 (1) solution. Given this condition, we obtain Eqs. (39,  (36a) 

and the following: 

We obtain Eq. (37) and the following under the same conditions as nl the DD an2 

The leading-order terms in Eq. (39b) yield the leading-order boundary conditions of Eq. (38). 

pis: 

Therefore the leading-order LD-SN solution satisfies an LD-pseudospectral discretization 

of the FP equation, given the previously stated constraints on the cross section and the 

quadrature; the asymptotic boundary conditions are equal to the ones in the unscaled problem. 
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III.A.3. Linear Moments 

The scaled LM-SN discretization of Eq. (1) consists of Eqs. (31a), (31d), (39a), (39c), 

and the following: 

and r,ki = &s~iAxi / I & / .  The asymptotic analysis of Eqs. (31a), 

(31d), (39a), and (39c) that we perfonnedpreviously yields Eqs. (35), (36a), (41a), and (41b), 

provided that DN = MG'. The asymptotic analysis of Eq. (43) is more complicated. We 

recognize that the exponential terms are of higher order than any power of 6; we also note 

that a denominator term such as 6 a z  + 6 s ~ i / S  is 0 (6-l). Therefore the 0 (1) terms in Eq. 
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(43a) yield 

We may rewrite Eq. (44) with the help of Eq. (34) and the leading order term of Eq. (39c): 

Equation (41c) is obtained by combining Eq. (45) with the leading order terms of Eqs. (43d) 

and (43e). If y has no 0 ( 6 )  terms we obtain Eqs. (37) and (42). The leading-order boundary 

conditions are again given by Eq. (38). Therefore the leading-order LM-SN solution is 

identical to the leading-order LD-SN solution: it satisfies an LD-pseudospectral discretization 

of the FP equation. Once again, the constraints on the cross section and the quadrature apply. 

There is a similarity between the results of the Fp asymptotic analysis of the LM method 

and the results of diffusion limit analyses of characteristics methods (CMs)?' of which the 

LM method is an example. The diffusion limit analyses show that in this limit the solution 

to a CM discretization satisfies a discontinuous finite element (DFEM) discretization of the 

diffusion equation. In particular, the LM solution limits to an LD-diffusion solution. In a 

similar fashion, our FP analysis shows that the LM solution limits to an LD-FP solution in 

the FP limit. Although we have not analyzed other CM discretizations in the Fp limit it 

seems reasonable to expect that they too will produce solutions that satisfy some DFEM-FP 

discretization. 
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Fig. 1 e Typical 2-D FEM element. 

III.B. X-Y Geometry 

We now will study some related discontinuous finite element (FEM) schemes in two- 

dimensional Cartesian geometry: the bilinear discontinuous (BLD), the lumped bilinear 

discontinuous (LBLD) and the simple corner balance ( S a )  methods. Our study will be 

restricted to rectangular grids; a typical element is shown in Figure 1. Various points in the 

element are labeled. The numbers refer to the comer in which the point is located, and the 

letters refer to the side (L for left side, B for bottom, etc.). The points are the locations (real 

or conceptual) where unknown flux quantities are defined. The FEM discretizations are all 

defined by the following equations: 
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P k  -U AX; 
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(46i) 

where f is the boundary incident flux, the limits on (n, m) are determined by the quadrature 

used, and the matrices U, N, K, L, and M are given by 

u =  

SCB 

-2 -1 0 0 "[4 y1, BL ;[; -1 0 0 0 0  0 1  

0 1 0  
0 0 1  

D, LB LD 

SCB 
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K =  

L =  

M =  

D, LB 

SCB 

D 

7 

1 - 2  -1 -1 - 2 1  
1 

1-1 0 0 -11 

4 2 1 2  

'$[I: 11' 
1 0 0 0  ,1[1:: 4 0 0 1 0 '  "1 

BLD 

LBLD, SCB 

We insert the asymptotic ansatz of Eq. (10) into Eq. (46) and consider terms of 0 (1) in 

Eq. (46b) to find: 
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We consider terms of 0 (&-I) in Eq. (46a) to find: 

M N , k , n m  
n,m 

where we have noted that M can be eliminated since it is invertible. As before, if DN = Ad;', 

then Eqs. (47) and (48) will be consistent. We shall assume that this is the case; then the 0 (6) 

terms in Eq. (46b) yield: 

= D N , n m , k  
k 

(46) yield: 

(49) 
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Eqs. (50b)-(50i) express the leading-order boundary conditions, which are simply the 

conditions applied to the unscaled problem. By our assumption of DN = M i 1 ,  the term 

in braces in Eq. (50a) disappears. Equations (15) and (50a) thus yield: 

pk -U  AX^ 
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assuming that y/S -+ 0 as S -+ 0. Thus, given that DN = M;' and that y has 

no 0 (6) components, the leading-order FEM-SN solution satisfies a EM-pseudospectral 

discretization of the W equation. 

In summary, the last two chapters have shown that some transport problems with 

forward-peaked scaling are described by the Fokker-Planck equation, while others are not; 

this is a function strictly of the scattering kernel. If the analytic problem does limit to the 

FP equation, then the discrete ordinates equations limit to a pseudospectral discretization 

of the IT equation, provided that the scattering source is treated carefully. If the discrete 

ordinates equations limit to a pseudospectral discretization of the FP equation, then (at least 

for the cases studied) reasonable spatial discretizations of the discrete ordinates equations 

limit to related spatial discretizations of the pseudospectral-FP equation. We have noted some 

similarities between the FP and diffusion limit analyses of characteristics methods. Finally, 

the leading order boundary conditions in the FP limit are identical to the boundary conditions 

for the unscaled problem. 
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CHAPTER IV 

ANGULAR MULTIGRID ACCELERATION OF THE SPATIALLY 

ANALYTIC DISCRETE ORDINATES EQUATIONS 

In the previous two chapters we analyzed discrete ordinates transport methods in the limit 

of highly forward-peaked scattering (the Fokker-Planck limit). We noted that in that limit the 

exact transport solution satisfies, to leading order, the Fokker-Planck equation, provided that 

the scattering kernel satisfies a certain condition. We then identified conditions under which 

certain discretized transport solutions satisfy, to leading order, reasonable discretizations of 

the Fokker-Planck equation. Assuming that these Fp discretizations have the desired accuracy 

for problems of interest, we therefore have identified conditions under which certain transport 

methods produce reliable results for certain forward-peaked problems. 

We now turn our attention to defining efficient methods for obtaining solutions to these 

transport discretizations. In most realistic problems it is necessary to use iterative solution 

methods. However, the convergence rates of iterative methods can be arbitrarily slow. It is 

therefore necessary to create computational acceleration schemes that improve the iterative 

convergence rate. The effectiveness of a given acceleration scheme may depend on the 

underlying physical problem and the discretization scheme. 

In this chapter we consider the acceleration of the spatially analytic, multidimensional 

discrete ordinates method in the Fp limit. We extend the angular multigrid 

previously defined for slab geometry, to the multidimensional setting. Our analysis shows 

that the basic angular multigrid scheme is unstable in multidimensional calculations, but we 

introduce modifications that make it stable and effective. 
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NA. Development of the Angular Multigrid Acceleration Method for Discrete Ordinates 

Calculations 

IV.A. 1. Acceleration of General Iterative Methods 

We begin by examining a general linear iterative method in order to construct the 

framework and terminology that will organize our development of iterative methods for 

transport calculations. This general presentation is a modification of one given by Morel.“ 
- 

Let the following be a linear system that we wish to solve: 

where H is a “high-order” operator and q is a “source”. In many linear systems of interest 

it is very difficult to directly invert H.  It often is possible, however, to “split” H into two 

operators, at least one of which is “easily” inverted: 

H = A - B .  (53) 

We then can define the following iterative method: 

where I is the iteration number and f(’) is an arbitrary initial iterate. Multiplication by A-l 

yields 

f (‘+I) = Zf(l) + A-lq (55)  
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where 2 = A-IB is the “iteration operator.” Examination of the eigenvalues of 2 reveals the 

effectiveness of the iterative method. If the spectral radius p of 2 (defined as the maximum of 

the absolute values of the eigenvalues) is greater than unity, the iteration can diverge, and the 

iterative method is not practically useful. If p << I, the iterative method will converge rapidly. 

If p 5 1, the iterative method will converge, albeit slowly. This last case is common among 

iterative methods. Modifications of these methods are required to decrease the spectral radii 

and thus to increase the convergence rates. 

In order to develop an approach to increase the iterative convergence rate, let us examine 

the error at each iteration. The error in an iterative approximation to the solution is given by 

Manipulation of Eqs. (52)-(56) yields an exact expression for the error: 

where d’+l) E f(z+l) - f ( l )  is the “residual”. Given the exact error we could use Eq. 

(56) to obtain the exact discrete solution after a single iteration. Unfortunately, Eq. (57) is 

just as difficult to solve as the original problem, Eq. (52), since we must invert H in both 

cases. However, if we could solve Eq. (57) approximately in an efficient manner, we could 

add the resulting error estimate to the current iterate and therefore obtain a better iterative 

approximation. We do so by replacing Eq. (57) with the following approximation: 
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where L is a “low-order” approximation to H and is “easily” inverted. This suggests the 

following iterative scheme: 

This can be written in the equivalent form: 

with the new iteration operator 2’ = ( I  - L-’H) 2. Clearly, if L M H then the spectral 

radius of 2’ will be small and the iterative method will converge rapidly. The modification 

to the basic iteration in Eq. (55) is called an “acceleration method”, and L is often called a 

“preconditioner”, since its application changes the eigenvalues and thus the condition number 

of the iteration operator. 

There are several criteria that L needs to meet for it to define a good acceleration 

method. First, L must produce a good estimate of those error modes that have the slowest 

convergence rate in the original iterative method. In other words, if we decompose the error 

into the eigenvectors of 2, we must produce a good estimate for those error eigenmodes 

corresponding to the eigenvalues of greatest absolute magnitude. In such a case L will be 

“effective”. Second, L must be “stable”: it must not greatIy overestimate any error modes, or 

those modes will diverge in the new iterative method. Finally, L must be “easily” inverted. We 
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must be able to invert L directly or iteratively at a reasonable computational cost, otherwise 

there will be no advantage in using the new iterative method. 

How does one find an acceleration method that meets the above criteria? Potential 

candidates are those operators that are asymptotic limits of the high-order operator, assuming 

that the high-order operator is reasonably close to the corresponding limit. These asymptotic 

operators are generally simpler, and thus easier to invert, than the high-order operator, yet 

they may behave similarly. This is the approach of diffusion synthetic acceleration (DSA), 

which we shall encounter later in this chapter. Alternatively, one may use an operator that 

results from a cruder discretization of the original problem, since it will presumably share 

many of the important properties of the high-order operator but will be easier to invert. This 

is the approach taken by the various multigrid schemes. Whatever the candidate acceleration 

method is, it must be carefully analyzed to determine its stability and effectiveness for the 

class of problems of interest. 

IV.A.2. Source Iteration 

The integro-differential transport operator is very difficult to directly invert for all but the 

simplest problems. In most cases an appropriate discretization of the monoenergetic equation 

can be solved by means of source iteration. The source iteration method for the discrete 

ordinates (SN)  discretization is given in operator notation by 
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where the N subscript indicates the quadrature order for which the operators are defined. The 

term “source” iteration is derived from the fact that we iterate on the right side of Eq. (61), 

which is the scattering source. 

In order to determine rigorously the effectiveness of source iteration we would need to 

examine all of the eigenvalues of the source iteration operator. This is usually done by means 

of a Fourier analysis, which we shall describe and use in the next section. However, we can 

place a lower bound on the spectral radius of the source iteration operator in a homogeneous 

infinite medium by restricting our attention to “flat” modes, i.e. those error modes that vary 

slowly spatially. For such modes the gradient operator fl V becomes negligible compared 

to the removal operator ct , yielding the following simpler iteration: 

where CN = EN/ o t , N e  We will assume throughout the following chapters that DN = M&l, 

for reasons described in the previous chapters. Therefore the eigenvalues corresponding to 

these flat modes are (csn /ot}. We define c = oSo /ot as the scattering ratio; as c + 1 

the source iteration method converges arbitrarily slowly. A full Fourier analysis of an 

infinite-medium problem would reveal that the flat mode corresponding to c is indeed the 

slowest converging mode. Therefore, although the source iteration method is stable for non- 
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multiplying media, it can have arbitrarily slow convergence. Methods must be found to 

accelerate these slowly converging flat modes. 

IV.A.3 e Diffusion Synthetic Acceleration 

Some transport problems are diffusive, meaning that the transport operator is “close” 

to the asymptotic diffusion limit.57 Such problems are characterized by large, nearly 

isotropic scattering cross sections, small absorption cross sections and optically thick media. 

Consequently the scattering ratio is close to unity and the source iteration method has a slow 

convergence rate. 

Since the diffusion equation is a good approximation to these problems (and for a wider 

class of problems it is a good approximation for flat, slowly converging modes), it is a good 

candidate as an acceleration method for source iteration. Over the last 30 years the diffusion 

synthetic acceleration @SA) method has been developed extensively~8~50*52~73,74~76~ 81994,96-115 

The basic DSA scheme uses a diffusion equation to estimate and correct the errors in the 

zeroth flux moment: 
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where we have omitted a fixed source term since it does not affect the iteration operator and 

we are only interested in the iterative convergence properties. We shall continue to omit the 

fixed source in future analyses, in which case and <P(l) may be interpreted as the iterative 

errors rather than the actual solution estimates. 

Let us examine the effect of DSA on the iterative convergence rate of flat error modes, 

as we did for source iteration. For flat modes Eq. (64) may be rewritten as 

Rearrangement of Eq. (65) leads to the following relation for the iteration errors: 

where we have defined a general scattering ratio cn,N = o s n , ~  / g t , N .  Our emphasis upon the 

order of the quadrature set by including N in the cross section subscripts will be important 

in our later multigrid development. If the scattering is isotropic, then Eq. (66) predicts that 

DSA will converge the ff at component of the solution in a single iteration. An analysis of all 

the iteration modes (not just the flat ones) in a homogeneous infinite-medium model problem 

reveals that the overall spectral radius of DSA for analytic transport is less than 0.23 in slab 

geometrylo3 and 0.5 in multidimensionsl l2 when scattering is isotropic, so for problems with 

isotropic scattering DSA is both stable and effective. 

I 
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In spatially discretized problems the situation is more complex. Alcouffe’O0 and 

Larsenlo3 found that to guarantee the stability of DSA in spatially discretized problems the 

discretization of the diffusion operato; must be consistent with or nearly consistent with the 

discretization of the transport operator. Furthermore, for DSA to be useful the diffusion 

operator must be easily inverted. Some of the discrete diffusion operators developed for 

DSA methods are symmetric and hence relatively easy to invert by the conjugate gradient 

method116 or by other means, whereas other proposed diffusion operators are more difficult 

to invert. In many cases attempts to alter the diffusion operator in order to invert it more 

easily cause DSA to lose its effectiveness. The development of effective and efficient DSA 

schemes remains an active field of research. 

IV.A.4. Current-Accelerating DSA 

The standard DSA method is stable and effective for diffusive problems with isotropic 

scattering. However, DSA loses its effectiveness as the scattering becomes increasingly 

anisotropic. Equation (66) shows that max {G,N} for n > 0 is a lower bound on the spectral 

radius of source iteration with DSA. When the scattering becomes sufficiently anisotropic we 

must also accelerate higher moments than the zeroth flux moment in order to have an effective 

scheme. 

Morelg6 proposed a variant of DSA in which the “currents” (Le. the first flux moments) 

as well as the scalar flux are accelerated. Like DSA, it may be derived as an approximation 

to transport theory (the PI approximation). The modified scheme is given by 
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where MJ and JM are matrices that convert the first flux moments to currents and back, 

respectively. For flat modes this method reduces to 

Combining Eqs. (68) yields the following convergence properties for flat error modes: 

Therefore the convergence rate for flat modes is governed by max { c n , ~ }  for n 2 2 rather 

than n 2 1. Since most physical forward-peaked scattering kernels produce CO,N 2 C1,N 2 
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- - 2 CL,N, where L is the order of the scattering, this extended DSA scheme has improved 

convergence rates over the standard DSA for flat modes without a greatly increased cost. 

One significant drawback to this modified DSA method that a full analysis reveals is that 

for multidimensional calculations one of its eigenvalues has a magnitude of Kc /( 1 - Kc), 

so for anisotropic scattering with G c  > 0.5 (when standard DSA loses its effectiveness) 

the modified DSA is unstable and thus cannot be used.'12 Additional modifications or other 

anisotropic acceleration methods must then be implemented. 

IV.A.5. Many-Moment Acceleration Methods and Angular Multigrid 

In the preceding analyses we have seen that a lower bound on the spectral radius of source 

iteration is given by max {h,~} for all n corresponding to "unaccelerated" moments. As the 

scattering becomes highly forward-peaked (c , ,~  + 1) it becomes necessary to accelerate 

more flux moments than just the zeroth and first ones. Thus we need to define acceleration 

methods of higher order than diffusion. 

Earlier we stated that the asymptotic limits of the transport operator may be good 

candidates for acceleration methods. In the current study we are interested in problems that 

are near the FP limit, so the FP equation would seem to be an ideal acceleration operator. 

Certainly we could expect an analysis to reveal that such an acceleration method would be 

effective. However, a good acceleration operator must be easily invertible, and experience has 

also shown that the discretization of the acceleration operator generally must be consistent 

with the discretization of the transport operator. Pseudospectral discretizations of the FP 

equation are similar structurally to the SN transport operator, so inversion methods like 

source iteration would have the same convergence difficulties. Instead of attempting to find 
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an inexpensive method of inverting the F'P operator, we shall look at other candidates for 

acceleration methods. 

The PN equations (another anisotropic asymptotic limit58 ) have been investigated 

as potential acceleration methods in slab geometry.10*-106~ 117-119 For both isotropic and 

anisotropic problems the PN acceleration method has been found to be more effective than 

DSA for odd values of N. However, because of the increasingly high cost of solving the 

coupled PN equations for increasing values of N the most cost-effective acceleration method 

was determined to be the PI scheme (equivalent to Morel's DSA method96). Khattab and 

Larsen119 defined an easily invertible PN-like method in which they solve the PN equations 

approximately by decoupling them, but this method's effectiveness slowly degrades as the 

degree of anisotropy increases. The PN equations are even more difficult to solve in 

multidimensions, so this approach is not very promising. 

A second approach that may be taken in the search for good acceleration methods is 

to use a more coarsely discretized version of the high-order operator. This approach has 

been used in situations in which the geometry or the spatial discretization scheme makes it 

very difficult to construct a consistent and easily invertible DSA operator. Early attempts 

used 5'2 equations to accelerate the zeroth and sometimes the first flux m o ~ n e n t s . * * ~ ' ~ ~  More 

recently the transport synthetic acceleration (TSA) method has been developed; it uses a 

lower-order transport operator (not necessarily Sz) and modified cross sections to accelerate 

the zeroth flux moment.82. 125-127 The cross section in the TSA operator has been restricted to 

isotropic scattering in order to produce a symmetric operator, which is easier to invert than 

the asymmetric operators that result from anisotropic scattering. 
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In order to deal effectively with highly anisotropic scattering we propose to modify the 

above approach by using lower-order discrete ordinates operators with anisotropic scattering 

to define an acceleration method, Specifically, we will extend the angular multigrid method 

of Morel and Mante~ffel*~ to multidimensional transport. Before we describe their method 

and our extensions in detail, let us first examine the effectiveness of using a single low- 

order discrete ordinates operator with anisotropic cross sections to accelerate a high-order SN 

calculation. The basic method is the following two-grid scheme: 

where N‘ < N .  For compactness of notation we have defined the restriction operator PN-N~ 

and prolongation operator PN~+N: 

where QN/ is the set of spherical harmonics orders (n, m) that form the interpolatory basis 

for the quadrature of order N‘. Note that Eqs. (70) imply that we actually invert the Sl~t 
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equations; we shall return to this operation later. As in previous analyses we restrict our 

attention to flat error modes, which reduces our acceleration scheme to the following: 

t72a) g t , N @  ( I + + )  = E N @  ( I )  ) 

Combining Eqs. (72) yields the following iteration equation for flat error modes: 

Thus the spectral radius for flat modes is max(&,N} over only the n corresponding to 

unaccelerated moments. Since the only constraint that we have placed on N‘ is that it be less 

than N ,  many more moments than the zeroth and first moments may be accelerated, causing 

the spectral radius to be governed by higher-order scattering ratios than in DSA. 

The effectiveness of the above two-grid scheme apparently relies on completely inverting 

the lower-order discrete ordinates operator. This inversion is, of course, difficult to perform. 

Source iteration on the S N ,  operator will converge as slowly as it does for the SN operator 

(assuming for now that &,N/ = G,N). Therefore we need to apply an acceleration method to 

more rapidly invert the SNI operator. We also recognize that we may not need to completely 

invert the SNJ operator; a partial inversion may be sufficient to provide good acceleration 

at less cost than a full inversion. We reintroduce the DSA acceleration method and assume 

that a single SN,  sweep accelerated by DSA will be effective at accelerating the SN iteration. 
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Since the scattering is forward-peaked in many problems of interest and we are interested 

in multidimensional calculations, we shall use the standard DSA operator rather than the 

unstable current-accelerating DSA. The modified two-grid scheme is: 

where PNI+O is the restriction to and Po+N, the prolongation from the zeroth flux moment. 

After restricting our attention to flat error modes and manipulating the resulting equations we 

obtain the following equation for the iteration errors: 

A comparison of Eqs. (73) and (75) shows that failure to completely invert the SNI operator 

may degrade the effectiveness of the two-grid scheme, depending on the values of G,N and 

c,,N~. However, this scheme is more effective than accelerating the SN calculation with DSA 

alone, since IG,N&,NI I < ( G , N I .  Nevertheless, the convergence may still be arbitrarily slow 
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if G , N ~  = &,N M 1 for some value of n. What is needed is a method by which we may reduce 

the magnitudes of { c ~ , N I } .  

For this we turn to the extended transport correction. The extended transport correction 

was originally defined to improve the numerical accuracy of calculations with anisotropic 

scattering by including the effects of scattering moments of higher order than the cross section 

expansion This “correction” consists of subtracting a constant from all of the 

cross section moments, thereby defining “corrected” cross sections e;: 

e: = en - oCm, n 5 L. (76) 

The effect of the transport correction is to make the scattering less highly forward-peaked 

by approximately subtracting a delta function in the forward direction in the differential 

scattering cross section (which has no effect on the corresponding analytic angular flux 

solution). If a Galerkin quadrature is not used or if the scattering order is not equal to the 

maximum order of the spherical harmonics associated with the Galerkin quadrature (Le. if a 

full scattering matrix is not used) the discrete ordinates solution is not invariant with respect 

to the value of gWm. Standard values for the correction are ccmr = c~ or ocmr = e ~ + ~ ;  it has 

been found through numerical experience that the solution is improved when the extended 

transport correction is used.128. 13* The solution is invariant, however, if the discrete-to- 

moments and moments-to-discrete operators are inverses of each other and a full scattering 

matrix is used. To see that this is true, examine the following transport corrected discrete 

ordinates equation: 

[n V + (et - cC07T)lN 9 = MN [ E N  - ~ c o ~ T - I ]  DN** (77) 
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If D N  = M;’ then the terms containing oCon cancel and we are left with the uncorrected 

SN calculation. Although the solution may be invariant, the iterative convergence properties 

have been altered, since the corrected scattering ratios are given by 

and c,,, may be chosen to minimize these ratios, i.e. to make the scattering less anisotropic. 

In particular, for the DSA-accelerated two-grid scheme we may choose ocrrrr such that 

IC;,~, I < ICQJI. This is a crucial step in making this scheme as efficient as possible. 

The above concepts were all incorporated by Morel and Manteuffel into their angular 

multigrid (ANMG) acceleration method, which they developed, analyzed, and tested for slab 

geometry.29 Their scheme has the additional feature, inherent in multigrid schemes,131* 132 of 

a hierarchy of several low-order discrete ordinates operators, with each low-order operator 

accelerated by an operator of even lower order. (Multigrid schemes had been defined 

in the past for transport problems,133, 134 but their low-order operators used coarsened 

spatial discretizations rather than coarsened angular discretizations.) Morel and Manteuffel 

explicitly described the particular application to an SIC calculation, which in their scheme is 

accelerated by an Sg sweep, which in turn is accelerated by an S, sweep, which in turn is 

accelerated by a current-accelerating DSA calculation. A transport correction is applied to 

each SN operator (or “level”), including the topmost one, in order to optimize the “smoothing” 
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or convergence rate of those moments not accelerated by lower levels. Their analysis reveals 

that by using a series of successively lower order SN operators, each half the order of the 

previous operator in the series, an upper bound on the spectral radius of 0.6 is obtained with 

the ANMG scheme. (The angular multigrid method was originally referred to by the acronym 

AMG, but in order to avoid confusion with the more widely known algebraic multigrid 

method13’ we will use the acronym ANMG to refer to the angular multigrid method from 

now on.) 

The objective of the remainder of our work is to extend the angular multigrid scheme to 

multidimensional calculations. Initially we will examine the basic scheme, as expressed by 

Eqs. (74), with the inclusion of an arbitrary number of additional discrete ordinates levels. 

Instead of using the unstable current-accelerating DSA we shall substitute an S2 sweep 

accelerated by standard DSA as the lowest level. Modifications to the basic scheme will be 

defined to improve the stability and effectiveness as indicated by full analyses of the multigrid 

scheme. 

N B .  Fourier Analysis of the Angular Multigrid Acceleration Method 

In the previous section we examined the effects of various acceleration schemes on “flat” 

or slowly spatially varying error modes as a quick and simple indicator of their effectiveness. 

These analyses show that a lower bound on the iterative spectral radii of common acceleration 

schemes becomes arbitrarily close to unity as the scattering becomes highly forward-peaked. 

These same analyses show that a many-moment acceleration method such as the ANMG 

method can be quite effective at attenuating these flat error modes. This is a necessary 

property for the ANMG scheme to be a good acceleration method. 
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In order to completely determine the effectiveness and stability of any acceleration 

operator, however, we must examine all of its eigenvalues. A key step in this process is to 

identify small eigenspaces of the solution space that have finite dimension (and therefore a 

finite number of eigenvalues). Identification of these subspaces generally permits the use of 

numerical analysis techniques to determine the eigenvalues associated with each subspace. 

Assuming that all subspaces of the solution space are identified and analyzed, the behavior of 

the iterative method is completely determined. 

In the particular case of linear transport methods, a Fourier analysis is usually applied in 

order to determine the iterative eigen~a1ue.s.'~~ The errors are decomposed into Fourier modes 

(defined below), which are eigenfunctions of the transport operator and most acceleration 

operators. Subsequent analysis of each Fourier mode determines the effectiveness and 

stability of the iterative operator with respect to that mode. Not only does this determine 

the overall stability and effectiveness of the iterative method, but it also reveals details of the 

iterative behavior, which can suggest further improvements. 

We will employ Fourier analyses to determine the stability and effectiveness of the 

ANMG scheme. First we will demonstrate a Fourier analysis (and the need for additional 

acceleration in forward-peaked problems) by applying it to the DSA-accelerated SN method 

(SN-DSA) as expressed in Eqs. (64). We introduce the following Fourier ansatz: 



Equation (80) states that we can express the errors in terms of complex exponential functions 

with associated spatial frequencies A, where in two-dimensional problems X = (Az, A,). The 

total error is a linear combination of the error modes characterized by different A's. Close 

examination of Eqs. (64) shows that complex exponentials are indeed eigenfunctions of the 

SN-DSA operator, so we may analyze each of them independently. 

We introduce Eqs. (80) into Eqs. (64) and constrain the equations to an infinite 

homogeneous medium. Past experience with Fourier analyses has shown that infinite 

homogeneous medium results are generally in excellent agreement with computational results 

for the most difficult finite andor heterogeneous problems, which are analytically intractable. 

Equations (64a) and (64b) then yield 

A = DNL;;'MNCNB SNB, 

where LN = diag { o ~ , N  + i n k  A}. Equation (64c) yields 

CDSA = L~&APN,OCN (A - B )  E SDSA (A - B) , 

where L D S ~  = [ g a p  + /AI2/ b , N ] .  Equation (64d) yields 

W B  - A = Po+NCD~A. 

Finally, we combine Eqs. (81)-(83) to obtain 

WB = [PO-NSDSA (SN - I N )  + SN] B. 

(83) 

(84) 
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Equation (84) is a matrix eigenvalue problem; the dimension of the matrix is equal to the 

number of quadrature directions. The largest of these eigenvalues in absolute value for a given 

X we will call the “modal spectral radius” associated with error modes of this frequency; the 

spectral radius is the largest modal spectral radius for all A. 

We first analyze Eq. (84) for the $4 equations in x-y geometry with isotropic scattering, 

no absorption and the standard level-symmetric quadrature set. The results of this analysis are 

shown in Figure 2. The modal spectral radius is plotted as a function of the modal frequency, 

where we have converted the frequencies from Cartesian to polar coordinates. (In this and all 

succeeding analyses {A(  is measured in units of transport mean free paths.) As discussed in the 

previous section this iteration is stable and effective. As 1x1 + 0 (i.e. as the modes become 

flat) the modal spectral radii approach zero, a direct result of the DSA development. At higher 

frequencies the modal spectral radius is greater than zero yet much less than unity, which 

shows that DSA produces an imperfect but nevertheless reasonable error estimate at non- 

zero frequencies. Note also that at certain angles there are somewhat larger modal spectral 

radii at high frequencies; these angles correspond with quadrature directions. Although the 

modal spectral radii along these rays are higher than at other angles, the iteration is still quite 

effective. 

Before we examine the effects of a forward-peaked kernel on the modal spectral radii, 

let us look more closely at the Fokker-Planck kernel and its effect on flat modes. In Chapter 

I1 we derived the asymptotic FP scattering kernel, Eq. (8). If we apply the standard transport 

correction to this kernel, we obtain the standard form of the FP kernel: 

+ 1) - n (n + I)] . 
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Fig. 2. Fourier analysis of S4-DSA iteration, isotropic scattering. 

In Table I we list values for gsn and the associated scattering ratios for a P4 expansion 

( L  = 4) with gtr = 1 and 8a = 0. The scattering ratios associated with unaccelerated 

moments form lower bounds on the overall iterative spectral radius. For an S4-DSA 

calculation that uses the standard FP kernel, Table I shows that the spectral radius will be 

at least 0.9. However, we can make some improvements by applying an optimized transport 

correction. In the S4-DSA case we subtract the value ( 0 4  + 01)/ 2 from all of the scattering 

moments, resulting in the optimized values of osn and 1 ~ 1  listed in Table I. With this transport 

correction the modal spectral radius is reduced to 0.82. 

We now apply a Fourier analysis to the S4-DSA iteration with the optimized FP kernel 

derived above and no absorption. Solution of Eq. (84) for the modal spectral radii yields the 

results displayed in Figure 3. The high frequency results are very similar to the isotropic case: 
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T m L E  I 

Standard and Optimized P4 FP Cross Sections and Scattering Ratios 

n gsn (standard) 1cJ (standard) csn (optimized) (optimized) 
10 1 .o 5.5 1 .o 

1 9 0.9 4.5 0.82 
2 7 0.7 2.5 0.46 

I 

3 1  4 0.4 -0.5 0.09 
4 1  0 0.0 -4.5 0.82 

despite some narrow regions of increased modal spectral radii the iteration scheme is fairly 

effective. However, at low frequencies the spectral radius is close to unity. The modal spectral 

radius for 1x1 = 0 is indeed 0.82, as derived above, although for intermediate frequencies it 

is as high as 0.90, the overall iterative spectral radius. This demonstrates the ineffectiveness 

of DSA for highly anisotropic scattering and the need to accelerate additional moments. 

In Figures 4 and 5 we plot the modal spectral radius for &-DSA and Ss-DSA iterations, 

respectively, with optimized FP kernels. Because of the increased quadrature orders we need 

to use FP expansions of higher order, so the scattering anisotropy is more extreme. In the Ss 

case the flat modal spectral radius with an optimized FP kernel is 0.91 (reduced from 0.95 

with the standard FP expansion). The overall &-DSA spectral radius is 0.95. In the S g  case 

the flat modal spectral radius is 0.95 (reduced from 0.97 with the standard FP expansion). The 

overall $8-DSA spectral radius is 0.97. Not only does DSA become even more ineffective 

as higher order FP expansions are used, but the optimized transport correction also loses 

effectiveness. The high frequency behavior is similar to that seen in the S4-DSA results. 

Note that as we increase the FF expansion order in these analyses we keep otr = 1, which 

means that ct increases. This may explain why the qualitative trends in Figures 3-5 seem 

to scale to progressively higher frequencies as we increase the quadrature and scattering 
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Fig. 3. Fourier analysis of S4-DSA iteration, optimized FP scattering. 
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Fig. 4. Fourier analysis of SG-DSA iteration, optimized Fp scattering. 
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Fig. 5. Fourier analysis of &-DSA iteration, optimized FP scattering. 

order. One final aspect that these analyses reveal about DSA-accelerated SN schemes with 

forward-peaked scattering is that the eigenvalues of greatest absolute value occur in complex 

conjugate pairs; in contrast, in relatively isotropic problems the dominant eigenvalues are 

almost always This difference will become important when we attempt to confirm 

our Fourier analyses numerically. 

Now that we have demonstrated the Fourier analysis method and have shown in greater 

detail the ineffectiveness of DSA when applied to forward-peaked problems, we will Fourier 

analyze several specific examples of the ANMG acceleration method. Our first example is 

the DSA-accelerated two-grid scheme presented in Eqs. (74). We augment the Fourier ansatz 
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of Eqs. (80) with the following: 

We substitute the Fourier ansatz into Eqs. (74). Equations (74a) and (74b) yield Eq. (81). 

Equations (74c) and (74d) yield 

Equation (74e) yields 

Equation (740 yields 

Finally, combining Eqs. (8 1) and (87)-(89) yields 

We solve the above eigenvalue problem for the &-&-DSA scheme (N = 4, N‘ = 2) 

with FP scattering and an optimized transport correction on each level (“optimized” will 

always mean that at each level the absolute values of the scattering ratios corresponding 

to moments that are unaccelerated at lower levels are minimized). The flat modes of this 
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scheme will have a modal spectral radius of 0.54. The Fourier analysis results are shown 

in Figure 6 .  The multigrid scheme does indeed accelerate low-frequency modes well, as 

predicted. However, this scheme also excites high-frequency errors that correspond to one of 

the quadrature directions; the resulting spectral radius is 2.37 (in the figure all modal spectral 

radii greater than 2.0 are plotted as 2.0). Therefore this specific application of the ANMG 

method is unstable and cannot be used without modification. 

Before we address the question of whether we can stabilize the S4-Sz-DSA iteration let 

us first analyze some other ANMG schemes to determine whether high-frequency instabilities 

are common for plane waves along quadrature directions for this class of acceleration 

methods. We extend Eqs. (74 ) to allow for an additional discrete ordinates level. This three- 
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Fig. 6. Fourier analysis of S4-S2-DSA iteration, optimized FP scattering. 
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grid scheme consists of Eqs. (74a)-(74d) and the following: 

The extension of these equations to even more grids is obvious. We again augment the Fourier 

ansatz to include the additional level: 

We substitute the Fourier ansatz into Eqs. (74a)-(74d) and (91). We obtain Eqs. (81) and (87) 

as before. Equations (91a)-(91b) yield 

Equation (9 1 c) yields 
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Equation (9 1 d) yields 

Finally, combining Eqs. (8 I), (87), and (93)-(95) yields 

Equation (96) describes the eigenvalues of a general three-grid iteration. 

We now examine the particular schemes SG-&-S~-DSA and S8-&-S2-DSA with 

optimized FP scattering. Our selection of the number of grids and their quadrature orders 

is identical to that of Morel and Manteuffel (with the addition of the S2 operator), in which 

N‘ = Half (N), where 

:, 4 even { -  f + l ,  f odd 
Half (N) = (97) 

Our analysis of flat modes with optimized transport corrections gives a modal spectral radius 

of 0.40 for the &-S4-S2-DSA iteration and 0.57 for the &-&-&-DSA iteration. The Fourier 

analyses of these schemes are shown in Figures 7 and 8. We observe the same qualitative 

behavior seen in the &-S,-DSA iteration. Low-frequency modes are well accelerated by the 

ANMG method. However, high-frequency instabilities plague this acceleration scheme. The 

spectral radius for the &-&-&-DSA iteration is 1.62; that of the &-&-&-DSA iteration is 

2.44. Additional analyses confirm that these instabilities are not the result solely of the Sz 

or DSA operators; accelerating the high-order operator by inverting any of the lower-order 

discrete ordinates operators creates high-frequency instabilities. It seems reasonable to expect 
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Fig. 7. Fourier analysis of SG-S4-S2-DSA iteration, optimized FP scattering. 
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Fig. 8. Fourier analysis of SS-S~-S~-DSA iteration, optimized FP scattering. 
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that higher-order ANMG methods will also exhibit this general behavior: low-frequency 

modes will be well accelerated, but the overall iteration will be destabilized by certain high- 

frequency modes. If we wish to use this type of acceleration method we need to find a way 

to stabilize the high-frequency corrections without significantly degrading the acceleration of 

low-frequency modes. 

Two observations will guide our development of a stable ANMG acceleration method. 

First, low-frequency modes are stable and well accelerated by the basic ANMG scheme. If 

possible, we do not want to define any modifications that alter the low-frequency corrections. 

Second, the Fourier analyses of ordinary source iteration (with or without DSA acceleration) 

show that the high-frequency modes are stable and well attenuated by that iteration; it is the 

ANMG corrections that destabilize these modes. Therefore we desire a modification to the 

ANMG scheme that produces little or no correction at high frequencies. In summary, we seek 

an operator that we can apply to the ANMG corrections that is the identity for low-frequency 

modes and is the zero operator for high-frequency modes. This is a classic description of a 

low-pass filter; it also may be used as a working definition of an elliptic operator. Desirable 

properties for such an operator in our situation are that it is easily invertible and easily 

implemented. 

Such an elliptic operator is already in use in the acceleration schemes we have examined 

so far: it is the diffusion operator for DSA. At high frequencies the V2 term becomes very 

large, so its inversion results in a vanishingly small correction. On the other hand, at low 

frequencies the V2 term becomes negligible compared to a non-zero absorption term; if 

oa = gs0 then we have the identity. We therefore propose to modify the ANMG acceleration 
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method by replacing the equation for the corrections with the following: 

r -, 

where for now we shall let af = a t , N .  

Note several things about the above modifications. First, we do not propose to filter 

the DSA corrections; these corrections are small at high frequencies and have already been 

observed to be stable. Second, the filter contains a tuning parameter af; we may adjust this 

parameter to define the boundary between “low” frequencies and “high” frequencies. Third, 

at low and high frequencies the filter will in fact limit to the identity and the zero operator, 

respectively, as desired. Last, the filter is applied to each angular moment independently. One 

of the ramifications of this is that the filter is easily parallelizable and hence may result in 

little additional computational cost. It also means that for a given spatial error mode the filter 

is simply a multiplicative constant for all of the angular moments of that mode. Therefore 

it does not matter whether we calculate the ANMG corrections and then filter them or if we 

apply the filter to the residual that drives the ANMG method; the final ANMG corrections are 

the same. (This reordering of operators would result in the filtering of the DSA corrections, 

however.) 
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A Fourier analysis of the filtered ANMG method yields the following eigenvalue 

problem (written here for the three-grid scheme): 

where 

( 1 OOa) 

( 1 OOb) 

We solve Eq. (99), or its generalization to ANMG methods of an arbitrary number of 

levels, for the &-S2-DSA-filter, &-&-&-DSA-filter, and S,-&-S2-DSA-filter iterations with 

optimized FP scattering and af = 1. The results are shown in Figures 9-1 1. These figures 

show that the spatially analytic ANMG acceleration method is stable and effective for SN 

discretizations of order 4, 6, and 8 when the ANMG corrections are diffusively filtered. The 

spectral radii for the filtered schemes are 0.65,0.63, and 0.85 for the S4, &, and Ss schemes, 

respectively. It is not surprising that the spectral radii are larger than the modal spectral 

radii for flat modes; this is seen in DSA-accelerated schemes. The spectral radius for the Sg- 

ANMG iteration is noticeably higher than for the other iterations; a comparison of Figures 

8 and 11 shows that in this particular case the filter may be tuned to too high a frequency 

"cutoff", which we shall define as the frequency of the modes that are reduced in magnitude 

by a factor of 2 by the filter. 

Let us look at the effect of adjusting the filter tuning parameter, a f .  Figure 12 shows the 

effect of reducing of to 0.1 on the Ss ANMG iteration, which should allow higher frequency 



69 

1.5 

m 

c 
0.5 

1 

0.0 
0.0 50.0 100.0 150.0 200.0 

lambda (magnitude) 

250.0 

0.00 0.25 0.50 0.75 1.00 

modal spectral radius 

Fig. 9. Fourier analysis of S4-Sz-DSA-filter iteration, optimized FP scattering 
("f = 1 , q  = at ,4>.  

100 0 206.0 306.0 400.0 500.0 

lambda (magnitude) 

0.00 0.25 0.50 0.75 1.00 

modal spectral radius 

Fig. 10. Fourier analysis of &-&-&-DSA-filter iteration, optimized FP scattering 
(af = 1, of = Ot,6>. 
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Fig. 1 1. Fourier analysis of &-&-&-DSA-fiiter iteration, optimized FP scattering 
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Fig. 12. Fourier analysis of S&-&-DSA-filter iteration, optimized FP scattering 
(af = 0.1, Of = at,8). 



71 

0:o lob.0 2ob.o 300.0 400.0 500.0 

lambda (magnitude) 

0.00 0.25 0.50 0.75 1.00 

modal spectral radius 

Fig. 13. Fourier analysis of &-&-&-DSA-filter iteration, optimized FP scattering 
(af = 10, af = at,s). 

corrections to pass through unchanged. The tuning parameter is too low in this case; the 

high-frequency instabilities are clearly present. Figure 13 shows the effect of increasing 

a f  to 10 on the S g  ANMG iteration. Although the marginally stable region in Figure 11 

has now been effectively filtered, the modal spectral radii of some other modes of the same 

frequency magnitude have increased, resulting in an overall spectral radius of 0.72. These 

results show that the selection of an optimal value for af is not trivial. If af  is too low then 

the ANMG method is destabilized by high-frequency corrections; if of is too high then the 

ANMG method loses some of its effectiveness. 

In practice, it is desirable to use a constant value of a f  that yields an unconditionally 

stable and effective ANMG acceleration scheme for any SN order. The appearance of a 

frequency region of increased modal spectral radii in the filtered S8-ANMG iteration that was 
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TABLE II 

Spectral Radii of Filtered SN-ANMG Iterations (a f  = 1, of =  at,^) 

6 0.63 e0 

12 1.04 
14 1.32 

not present in the S4 or Ss schemes suggests that we should examine the ANMG acceleration 

of some higher-order problems to determine if this is an indicator of an undesirable trend. 

In Table I1 we record the spectral radii and the frequencies of the slowest-converging modes 

of a sequence of filtered SN-ANMG iterations with a f  = 1 and af = Ot,N. As N increases 

the spectral radius increases rapidly; in fact, the S12 and S14 iterations are unstable. The 

parametric study of the previous paragraph leads us to believe that a sufficiently large value 

of cuf would stabilize these iterations, but this does not guarantee that a constant value of cuf 

would stabilize SN-ANMG iterations of an arbitrary order. 

In order to determine whether we can define a filter which yields an unconditionally 

stable ANMG scheme, we first note that the instabilities recorded in Table II occur at 

approximately the same frequency. Thus we desire a filter that has the same frequency cutoff 

regardless of S, order. The filter we have defined in Eq. (98b) does not have a constant cutoff 

frequency when CTJ = crt,N. The cutoff frequency in this case is 
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TABLE III 

Spectral Radii of Filtered SN-ANMG Iterations (a f  = 1, af = oC) 

As the quadrature and scattering orders increase the FP cross section expansion yields an 

increasing value of Ot,N, which increases the cutoff frequency. However, btr is constant with 

respect to the cross section expansion order. Therefore, if we let cf = atr we can expect the 

filter to scale to higher quadrature orders without any changes to its frequency properties; its 

cutoff frequency is 

In Table III we record the spectral radii and corresponding slowest-converging 

frequencies €or a sequence of filtered SN-ANMG iterations with cxf = 1 and af = ntT. All of 

the iterations examined are stable, although the spectral radii are gradually increasing. Note 

that the frequencies of the slowest-converging modes are greater than the cutoff frequency, 

which is about 1.7. Therefore their modal spectral radii are close in value to the corresponding 

modal spectral radii of simple source iteration, which is stable. We thus expect the ANMG 

scheme to remain stable for increasingly higher SN orders when af = 1 and of = at,; the 

trend in Table III suggests, however, that the scheme may become increasingly ineffective. 

Nevertheless, since low-frequency modes are better accelerated by the ANMG scheme 
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than by DSA alone the ANMG scheme should remain more effective than simple DSA- 

acceleration. 

In summary, the analyses of this chapter have shown that common acceleration schemes 

for discrete ordinates problems with source iteration are ineffective when scattering is highly 

forward-peaked; numerous flux moments need to be accelerated. The basic (unfiltered) 

spatially analytic ANMG method is an effective acceleration method for low-frequency 

modes in these problems, but it generally is subject to high-frequency instabilities. These 

instabilities can be eliminated by filtering the corrections with an elliptic operator; the 

diffusion equation is preferred for practical reasons since it is already used for DSA. The 

filter may be tuned to define the boundary between low and high frequencies; the selection 

of the tuning parameter affects the stability and effectiveness of the ANMG method. Since 

all of these results are obtained from analyses of the spatially analytic equations, we need 

to perform additional analyses to determine whether these properties remain when we apply 

spatial discretizations to these methods. 
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CHAPTER V 

ANMG ACCELERATION OF THE SPATIALLY DISCRETIZED 

DISCRETE ORDINATES EQUATIONS 

In the previous chapter we extended the angular multigrid scheme to the spatially 

analytic discrete ordinates equations in x-y geometry. Our analysis showed that the basic 

ANMG scheme is subject to high-frequency instabilities, but that the method is stable and 

effective when the ANMG corrections are diffusively filtered. Although we did not examine 

the method in three dimensions, experience has shown that the qualitative behavior of . 

transport methods in x-y-z geometry is close to that seen in x-y geometry. Therefore we will 

assume that the spatially analytic ANMG method is stable and effective in x-y-z geometry, 

unless subsequent numerical tests show otherwise. 

We now focus on the application of the ANMG method to the spatially discretized SN 

equations in x-y geometry. Conceptually this is simple, since we will be using the same type 

of operators that we used in the spatially analytic case. The discrete ordinates equations that 

we choose to examine are the class of finite element methods presented in Eq. (46). As DSA 

and filter operators we will consider the methods presented in Appendix A. These are the 

modified 4-step ~perator'~' and the DSA operator of Wareing, Larsen, and ad am^^^ (WLA), 

as modified by Wa~-eing.'~~ 

As in the last chapter we will employ Fourier analyses to determine the stability and 

effectiveness of the various iterative methods. Specifically, we want to determine whether 

the spatially discretized ANMG method is effective at accelerating flat modes and whether 

it is subject to high-frequency instabilities. If instabilities are present, we need to determine 



whether the candidate filter operators are “discrete elliptic”, that is, whether they eliminate 

high-frequency modes while having little or no effect on flat modes. Assuming that the filters 

are effective and stable, we want to determine the spectral radii for a variety of ANMG- 

accelerated discrete ordinates calculations. 

VA- Development of Fourier Analysis Equations 

We begin by introducing a Fourier ansatz that is applicable to the FEM framework. We 

include all of the variables that will be used in the final ANMG method; not all will be used 

in the methods that precede it in our analyses. Our discrete Fourier ansatz is 

f ( I )  
corr,nm,c,ij 

(103a) 

(103b) 

(103c) 

(103d) 

(103e) 

(1030 

(1 03g) 

(103h) 

(103i) 
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where the subscript c E { 1,2 ,3 ,4}  indicates the cell corner in which each variable is defined. 

Note that we have assigned the same phase (X,zi + X,yj) to all the variables in a given cell, 

regardless of their actual location. This is an arbitrary choice, since the selection of a different 

phase only introduces a multiplicative complex constant into the above ansatz. This constant 

(and all other multiplicative constants in the Fourier ansatz) will be algebraically eliminated 

as long as we are consistent in our analysis. The above phase selection has been chosen for 

its convenience in the following analyses. 

In Chapter IV we introduced the Fourier ansatz into the iterative equations to find the 

transformations between the iterative variables for a given Fourier mode; the combination of 

these equations yielded an eigenvalue problem. We will do the same thing in the discrete 

setting, except that we will concentrate more heavily on the transformations defined by 

each individual operator. The combination of these operators will yield the various iterative 

equations and corresponding eigenvalue problems. 

The first operators we will examine are those defined in the FEM equations in Eq. (46), 

where we define the left side of Eq. (46a) as the sweep operator, LN. We substitute the 

Fourier ansatz of Eq. (103) into LN and the definitions of Eqs. (46c)-(46j), yielding 
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(0, I) (e-ixzaZ, 0) 0 0 
(0, e&Az ) (170) 0 0 

1 L N  = -u 
AX 0 0 (I, 0) (0, eixzAz 
I-lk ! 0 

0 

p k  q k  +-K + -L + o~,NM. Ax Ay 

Here we have introduced the notation (~ ~ e ) ;  if the left side of the matrix subscripts (Le. pk > 0 

or q k  > 0) is true then (L,  R) is evaluated as L, and if the right side is true then (L, R) is 

evaluated as R. 

Next we define the right side of Eq. (46a) as the scattering source operator, QN (we 

ignore the fixed source as usual). Substitution of the Fourier ansatz yields 

where the B subscript indicates that we have defined block matrices. If the original matrix 

is 4 x 4 (e.g. M), then the corresponding block matrix is a diagonal block matrix with each 

block equal to the original matrix. If the original matrix has a dimension equal to the number 

of quadrature directions (e.g. MN),  then block i, j of the corresponding block matrix is a 4 x 4 

diagonal block with each diagonal element equal to element i, j of the original matrix. The 

dimension of any of these block matrices is four times the number of quadrature directions. 
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We can combine the above operators into the following discrete ordinates operators: 

where 

( 106a) 

( 106b) 

This completes our description of the operators in Eq. (46). 

Now we will analyze the diffusion operators that we will use for DSA and for filtering 

the ANMG corrections. The first operator we will examine is the modified 4-step (M4S) 

operator of Eq. (A.la). The left side of this equation is the M4S DSA loss operator, L M ~ s .  

Substitution of the Fourier ansatz into LM4S and the definitions of Eqs. (A. 1b)-(A. li) yields 

the following form for LM~s:  

Ax 
2 +-I3 [ Jy1 Jy2 Jy3 Jy* 3 + c,AxAyM, (108a) 

(1 08b) 

(108c) 
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P 0 1 
-2 - ( a  - g) e--iXyAY 

D D iX Ay a + - - - - e  y 2Ay 2Ay Jy3 = I 2Ay 0 

(108d) 

(108e) 

(108h) 

(10%) 

Similarly, the right side of Eq. (A. 1 a) is the DSA source operator, Q M ~ s .  The Fourier form 

of this operator is simply 
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Finally, recognizing that q in Eq. (A.1a) is the product of oSo and the zeroth moment of the 

residual, we may define the overall DSA operator, sfy14.9: 

where we assume that we are applying DSA to a discrete ordinates calculation of order N .  

If we are using the modified 4-step method as a filter, a Fourier analysis yields a filter 

operator, F M ~ s ,  that is similar to LM4S .  The only differences are that all cross sections 

are replaced by of (including the ones defining the diffusion coefficients) and the diffusion 

coefficients are multiplied by a f .  

We now examine the modified WLA method, as expressed in Eqs. (A.4) and (A.9). We 

define the left side of Eq. (A.4) as the continuous DSA loss operator, LCD. The Fourier form 

of this operator is 

The right side of Eq. (A.4) is the continuous DSA source operator, Q C ~ .  Its Fourier form is 

The left side of Eq. (A.9) we define as the discontinuous DSA loss operator, Loo; its Fourier 

form is 
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The right side of Eq. (A.9) is the discontinuous DSA source operator, &DO. Its Fourier form 

is 

where 

Finally, we may combine these operators into the WLA DSA loss operator, LWLA: 

The definitions of QwLA, SWLA, and FWLA are analogous to those for the modified 4-step 

method. QWLA is equal to QM~s .  SWLA is defined as 

FWLA is equal to LWLA when all cross sections are replaced by af and the diffusion 

coefficients are multiplied by a f  . 
We now combine the operators we have just defined and analyzed into iterative equations 

and eigenvalue problems. The DSA-accelerated DFEM-SN equations are analogous to Eq. 

(64), except that we substitute the spatially discrete operators for the corresponding analytic 

ones. By the same combination of the Fourier-analyzed operators and equations we obtain an 
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eigenvalue problem analogous to Eq. (84): 

wB = [PO- .N,BSMIS ( S N  - I N $ )  + S N ]  (1 18) 

If the modified WLA DSA method is used rather than the modified 4-step method, we replace 

S ~ 4 s  with SWLA in Eq. (1 18). The spatially discrete eigenvalue problem for the unfiltered 

two-grid scheme is analogous to Eq. (90): 

The spatially discrete eigenvalue problem for the unfiltered three-grid scheme is analogous to 

Eq. (96): 

Finally, the spatially discrete eigenvalue problem for the filtered ANMG scheme is analogous 

to Eq. (99): 

(121) 

where FB is either FMIS,B or FWLA,B and SCOT, is analogous to Eq. (1OOb): 



VB. Fourier Results 

In the previous section we derived the Fourier eigenvalue problems for a variety of 

DFEM discrete ordinates iterations. In this section we solve these eigenvalue problems in 

order to determine the stability and effectiveness of these iterative schemes. As a baseline 

case we will use the BLD S4 equations. We will vary the DFEM method, the quadrature order, 

and other parameters in order to understand the stability and effectiveness of these iterative 

methods. 

Before we report the results of these studies, we note some differences between spatially 

discrete and spatially analytic Fourier analyses. In the spatially analytic case we vary only X 

for a given iterative scheme; in the discrete case we also can vary Ax and Ay. Therefore for 

every Fourier analysis we might perform in the spatially analytic case there corresponds any 

number of Fourier analyses in the discrete case. We will select a representative sample of cell 

dimensions that will reveal the characteristics of the iterative methods for different types of 

meshes. In addition, a given spatial mesh only supports a limited range of frequencies A. Any 

AzAx x A,Ay that lies outside of the range (0, T) x (0, T) is, as far as the discrete problem 

is concerned, identical to some lower frequency that is within this range. Therefore we may 

limit our search for the iterative spectral radii to the above range of frequencies, whereas in 

the analytic case we must theoretically examine X of any magnitude. 

The search process is conducted by defining a grid of points within the frequency range 

described above. This grid is defined for the magnitudes and angles of the frequencies rather 

than their Cartesian components A, and A,; a 25x50 grid is nominally used. The modal 

spectral radius for each frequency is calculated and the maximum modal spectral radius (and 

corresponding frequency) is recorded. A new grid centered on this frequency with a finer grid 
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spacing and smaller range is defined and the process is repeated. This search on successively 

finer grids is terminated when two conditions are met: the maximum modal spectral radius 

found on the most recent grid is within of the one found on the previous coarser grid 

and the largest five modal spectral radii found on the most recent grid are within 5 ~ 1 0 - ~  of 

each other. This process should identify the frequency regions which contain local maxima 

and then narrow in on the global maximum in most cases. 

We begin our Fourier analyses by examining the DSA-accelerated S4 iteration with 

BLD spatial discretization, the modified 4-step method, optimized Fokker-Planck scattering, 

and no absorption. The spectral radii are reported in Table IV. Here we measure the cell 

thicknesses in units of transport mean free paths, vtTAx and atray. We apply an optimized 

transport correction to the scattering kernel in order to demonstrate the best spectral radii that 

can be obtained with DSA-acceleration alone. Table IV shows that a spectral radius of 0.90 

is obtained regardless of cell dimensions, which is the same value we obtain in the spatially 

analytic case. This is not surprising, since our spatially analytic results showed that our 

spectral radius was determined by the flat modes. Not only are the flat modes supported by 

all mesh sizes, but the vanishingly slow spatial variation of these modes tends to negate the 

effects of spatial discretization. We also note that the modified 4-step method does not lose 

its effectiveness as the cell sizes or aspect ratios are varied. 

We note in Appendix A that the modified 4-step DSA equations are generally difficult to 

solve. However, the modified WLA method is relatively easy to solve, albeit at the expense 

of effectiveness in some situations. In Table V we report the spectral radii for an S4-DSA 

calculation that uses the modified WLA method for the DSA operator. Here we can see that 

this DSA method is ineffective when the mesh cells have a large aspect ratio (where we define 
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TABLE N 

Fourier Analysis Results, BLD S4-DSA (M4S) Iteration, Optimized Fp Scattering 

i gtrAx 
.001 0.90 

jl/ 0.90 I 0.90 
0.90 0.90 
0.90 0.90 

. I  

0.90 
0.90 
0.90 
0.90 
0.90 

0.90 
0.90 0.90 
0.90 0.90 0.90 
0.90 0.90 0.90 

i000 

0.90 

TABLE V 

Fourier Analysis Results, BLD S4-DSA (WLA) Iteration, Optimized FP Scattering 

0.90 
0.90 
0.97 

.01 

0.90 
0.90 
0.90 
0.97 
0.998 
0.9998 

g t r a y  
. I  1 10 

0.90 
0.90 0.90 
0.96 0.90 0.90 
0.997 0.99 0.90 
0.9997 0.999 0.99 

0.9 1 
0.95 0.91 



TABLE VI 

Fourier Analysis Results, BLD Ss-DSA (WLA) Iteration, Optimized Fp Scattering 

1 
100 

I .01 I 0.95 I 

0.98 0.98 
0.9995 0.997 0.98 
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the aspect ratio as the ratio of the longer cell side and the shorter cell side). It also appears. 

that some effectiveness is lost as the cells become optically thick. Nevertheless, for most of 

the cell dimensions studied the modified WLA DSA operator is as effective as the modified 4- 

step operator. Of course the ANMG method has been developed with the intent of improving 

on these spectral radii, which are still quite high (and which increase as N increases). 

Before we study the stability and effectiveness of the spatially discrete ANMG scheme, 

let us examine the effectiveness of DSA for higher-order quadratures. In most of the studies to 

follow we will use the modified WLA method since in actual computations we will implement 

the scheme that we can easily solve. In Tables VI and VII we report the spectral radii of the 

S6-DSA (WLA) and S8-DSA (WLA) iterations, respectively, with optimized Fokker-Planck 

scattering (we have reduced the number of studies because of increasing computational cost). 

TABLE VII 

Fourier Analysis Results, BLD S8-DSA (WLA) Iteration, Optimized FP Scattering 
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TABLE VIII 

Fourier Analysis Results, BLD S4-Sz-DSA (M4S) Iteration, Optimized FP Scattering 

I C7tTA2 I .001 I .01 

i - i 6 6 d  0.65 I 0.65 

.1 

0.80 
0.65 
0.65 
0.65 
0.65 

For cells with high aspect ratios we again have lost DSA effectiveness, but we otherwise 

obtain nearly the same spectral radii as in the spatially analytic cases. 

Now we examine the stability and effectiveness of the unfiltered ANMG scheme. In 

Table VIII we report the spectral radii of the Sd-Sz-DSA iteration with the modified 4-step 

DSA and BLD spatial differencing. For very thin cells the iteration is unstable, with spectral 

radii approaching that of the spatially analytic case (2.37). However, for cells with at least one 

side longer than about one transport mean free path the iteration is stable and effective. These 

observations are a direct result of the fact that the ANMG instabilities we have encountered 

previously occur in high-frequency modes. As we discussed earlier a spatial mesh places 

an upper limit on the magnitude of the frequencies that can be supported. When the cells 

become sufficiently thick only stable, low-frequency modes will be observed. Depending 

on the physical problem and the mesh used, one may not even need to filter or otherwise 

alter the ANMG corrections for the iteration to be stable and effective, which would save 

implementation and computational costs. 

Now let us look at other ANMG schemes that use the modified WLA method. In Tables 

IX-XI we report the spectral radii for the Sd-Sz-DSA, the S&&-&-DSA, and the S&-&- 
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gtTA2 
.001 

TABLE M 

Fourier Analysis Results, BLD S*-Sz-DSA (WLA) Iteration, Optimized FP Scattering 

.001 I .01 I .1 
2.34 I 

1 

0.65 
0.78 
0.98 
0.998 

0.65 0.65 0.65 
0.91 0.91 0.90 
0.99 0.99 0.99 
0.999 0.999 0.999 

10 100 1000 

0.65 
0.89 0.71 
0.99 0.95 0.74 

DSA iterations, respectively, with BLD spatial differencing. A comparison of Tables IX and 

VIII shows that for thin cells the unfiltered ANMG scheme that uses the modified WLA 

DSA has the same spectral radii as the scheme that uses the modified 4-step DSA. As before, 

though, the method is ineffective (although stable) for high aspect ratio cells. We also see 

some degraded effectiveness for very thick cells. In the Ss and S8 cases we observe the same 

general properties: high-frequency instabilities that appear in meshes consisting of optically 

thin cells, stability but ineffectiveness when the cells have high aspect ratios, and reasonable 

effectiveness for other cell dimensions. 

In many problems of practical interest the physical medium is optically thick, and the 

cells that are created by applying a spatial mesh to the problem may be at least several 

transport mean free paths thick. In these problems the standard ANMG method will be stable 

TABLE X 

Fourier Analysis Results, BLD S~-S~-SZ-DSA (WLA) Iteration, Optimized FP Scattering 
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TABLE XI 

Fourier Analysis Results, BLD &-&-&-DSA (WLA) Iteration, Optimized FP Scattering 

a t ray  
utrax .01 1 100 

.01 1.53 

100 0.99 0.98 0.71 
1 0.64 0.64 

and effective, as Tables IX-XI indicate. However, there may be situations in which many 

or all of the cells are optically thin, in which case we must guard against high-frequency 

instabilities. We have already proposed using a diffusion operator such as the modified 4-step 

method or the modified WLA method as a low-pass filter to stabilize the ANMG scheme. 

Earlier in this chapter we stated that their performance depends on whether they are “discrete 

elliptic”, which we defined as eliminating high-frequency modes while leaving low-frequency 

modes unchanged. Before we apply these filters to the ANMG method to determine their 

effectiveness in that specific application, let us first examine these operators directly in order 

to gain insight into their properties. 

The first spatially discrete diffusion operator we will examine is the modified 4-step 

method. It is defined by Eq. (A.1); the Fourier analysis of its operators is given by Eqs. 

(108)-( 1 10). Recall that if this method is used as a filter we replace all cross sections with of, 

including the ones embedded in q, and multiply the diffusion coefficients by  CY^. If the cells 

are optically thick (af AzAy is large) then the last term in Eq. (108a) and the source term of 

Eq. (109) dominate; since these teams are equal we obtain the identity in the limit of thick 

cells, regardless of frequency. Therefore this filter will not alter any ANMG corrections for 

optically thick cells, which is desirable since there are no instabilities in this situation. 
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If the cells are optically thin, the behavior of the modified 4-step filter is more complex. 

Although the individual components of the currents (J21, etc.) are much larger than the other 

terms, these terms will cancel each other in the limit of X + 0. For flat modes we once again 

obtain the identity, which we desire. On the other hand, the currents will not identically cancel 

for high-frequency modes, and since these terms become arbitrarily larger than the source 

term as the frequency is increased and the optical thickness is decreased, we obtain the zero 

operator in the limit of X ---t 00. This also is a desirable property, since these modes produce 

the ANMG instabilities. Therefore the modified 4-step operator has the basic properties (in 

certain limits) that we desire for an ANMG filter. 

The filtering properties of the modified WLA method are similar to those of the modified 

4-step method, with some slight differences. The modified WLA method is specified by Eqs. 

(A.4) and (A.9); the Fourier forms of its operators are given in Eqs. (1 1 1)-( 116). (When 

the modified WLA method is used as a filter we incorporate a f  and af as described in the 

previous section.) For spatially thick cells we see that the last term in Eq. (1 13) and the left 

portion of the matrix in Eq. (1 14) dominate, regardless of frequency. These terms are equal, 

so we obtain the identity in the thick cell limit, as we did with the modified 4-step method. 

For thin cells we observe that the updated fluxes are set equal to the continuous solution; 

this is more easily seen in Eq. (A.9). As X t 0 the diffusion terms in the ,8 coefficients 

of the continuous equation cancel, and the continuous solution is equal to the average of the 

associated corner sources. Thus as afAx, afAy, and X t 0 we obtain the “continuous” 

identity, with all discontinuities eliminated. Since in this limit we expect discontinuities to be 

vanishingly small anyway, the filter effectively does nothing to modify these modes. On the 

other hand, as X --+ 00 the diffusion terms dominate, and since they are much larger than the 
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TABLE XII 

Fourier Analysis Results, BLD S4-Sz-DSA-filter (M4S) Iteration, 
Optimized FT Scattering (ap = 1, of = 

L T ~ ~ A X  .OO1 .01 .1 1 10 100 1000 
-001 0.65 
.o 1 0.65 0.65 

0.65 0.65 0.65 
0.65 0.65 0.65 0.65 
0.65 0.65 0.65 0.65 0.65 
0.65 0.65 0.65 0.65 0.65 0.65 
0.65 0.65 0.65 0.65 0.65 0.65 0.65 

source term we obtain the zero operator. Therefore the modified WLA method should be an 

effective filter for ANMG corrections. 

Now that we have theoretical reasons to believe that the modified 4-step and modified 

WLA methods will be good filters for the ANMG corrections, we will examine their actual 

performance. In Table XII we report the spectral radii of the S4-Sz-DSA-filter iteration, 

where the spatial discretization is BLD, the diffusion operator for both DSA and the filter 

is the modified 4-step method, the scattering is optimized Fokker-Planck without absorption, 

a f  = 1, and of = o t , ~ .  We see that the ANMG method works very well when a good DSA 

and filter operator is used; the spectral radius is 0.65 regardless of cell size. This supports our 

predictions of the filtering properties of the modified 4-step method. 

The performance of the modified WLA method as an ANMG filter is shown in Tables 

XIII-XV for the S4-S2-DSA-filter, S&&-S2-DSA-filter, and Ss-S4-S2-DSA-filter iterations, 

respectively, with the same parameters as in the previous case. We see that the instabilities 

recorded in Tables IX-XI have disappeared in the filtered scheme; the new spectral radii are 

equal to the ones obtained for the inherently stable, thicker cells. There is some degradation 

in performance for the inherently stable cells with high aspect ratios when the filter is applied. 
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TABLE XIII 

Fourier Analysis Results, BLD &-&-DSA-filter (WLA) Iteration, 
Optimized FP Scattering (at = 1, af = at,4) 

0.65 
0.65 
0.75 
0.98 

.01 

0.65 
0.65 
0.72 
0.97 
0.998 

0.9998 

.1 

0.65 
0.65 
0.94 
0.995 
0.9995 

1 0.71 &l%i I i::; I 0.998 0.99 0.95 0.74 

TABLE XIV 

Fourier Analysis Results, BLD &-S4-&-DSA-filter (WLA) Iteration, 
Optimized FP Scattering (af = 1, of = at ,s )  

U t A Y  
gtTAx .01 I 1 I 100 

.01 0.63 1 
1 0.83 0.63 

100 0.998 0.98 0.71 

TABLE XV 

Fourier Analysis Results, BLD Sg-&-&-DSA-filter (WLA) Iteration, 
Optimized FP Scattering (af = 1, of = at,*) 
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TABLE XVI 

Fourier Analysis Results, LBLD S4-Sz-DSA-filter (WLA) Iteration, 
Optimized Fp Scattering (a, = 1, af = ut,*) 

%All 
C T ~ ~ A X  .OO1 .01 .I  1 10 100 1000 

.OOl 0.65 
-01 0.65 0.65 

0.65 0.65 0.65 
0.86 0.81 0.65 0.65 
0.98 0.98 0.95 0.84 0.65 
0.998 0.998 0.995 0.98 0.90 0.72 
0.9998 0.9998 0.9995 0.998 0.99 0.95 0.74 

This is not too surprising, since the modified WLA method breaks down in these situations. It 

does indicate, however, that we want to avoid filtering unless we either must do so to stabilize 

the iteration or if we have no knowledge of the cell sizes to be used in a given calculation. 

As a final analysis of the filtered ANMG scheme we examine other DFEM methods. 

In Tables XVI and XVII we report the spectral radii for the &-Sa-DSA-filter scheme with 

the modified WLA method and with LBLD and SCB spatial differencing, respectively. The 

characteristics of these schemes are similar to those seen with BLD differencing. There are 

no instabilities, but the properties of the modified WLA operator cause the iteration to be 

ineffective for high aspect ratio cells. Performance is somewhat better for the SCB scheme 

than for the other DFEM methods for thick cells; the SCB method is already known to behave 

more physically in this limit. 

We remark that in the filtered schemes examined in this section we use of = Ist,N. 

In the previous chapter our spatially analytic studies revealed that af = gtr yields a filter 

that has better properties as higher quadrature orders are used. Since we have observed that 

the Fourier analyses of the spatially discretized schemes share important properties with the 

spatially analytic schemes when gf = Ut,N,  we are confident that we will observe the same 
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TABLE XVII 

Fourier Analysis Results, SCB S4-$2-DSA-filter (WLA) Iteration, 
Optimized Fp Scattering (af  = 1, af = at14) 

0.65 
0.87 
0.98 

0.65 
0.65 
0.85 
0.98 
0.998 
0.9998 

0.65 
0.72 
0.96 
0.995 
0.9995 

0.65 
0.86 
0.98 
0.998 

0.65 
0.90 
0.99 

0.65 
0.90 0.65 

behavior for filters that use Of = otr in spatially discretized schemes as seen with spatially 

analytic schemes. 

In summary, the analyses of this chapter have shown that the ANMG scheme applied to 

x-y DFEM SN calculations shares many of the characteristics of the spatially analytic method. 

The standard spatially discrete ANMG method is subject to high-frequency instabilities for 

thin cells. These instabilities disappear when the cells are of intermediate or large thickness; 

this desirable property obviously cannot be seen in the spatially analytic case. The spatially 

discrete scheme can be made unconditionally stable by applying a diffusive filter to the 

corrections. The effectiveness of the entire scheme is limited by the quality of the discrete 

diffusion operator, since it is necessary to accelerate the zeroth flux moment in order for the 

ANMG corrections to be effective. 
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CHAPTER VI 

NUMERICAL RESULTS 

In Chapters 11 and Lu we showed that under certain conditions ixLe spatiaIly analytic and 

spatially discretized SN equations limit to discrete versions of the Fokker-Planck equation 

when the scattering is highly forward-peaked. In Chapters N and V we developed an angular 

multigrid (ANMG) iteration method that is stable and effective for multidimensional SN 

calculations with highly forward-peaked scattering. In this chapter we present numerical 

results that confirm the predictions of these analyses. 

VIA. Fokker-Planck Asymptotic Limit 

In this section we will present numerical results that support our Fokker-Planck 

asymptotic analyses. We will restrict our attention to one-dimensional slab geometry. These 

results will demonstrate the asymptotic form of the cross section, the asymptotic limit of 

spatially analytic SN equations, and the asymptotic limit of severaI spatial discretizations of 

the SN equations. 

The specific analytic problem we will examine is defined by Eqs. (l), (2) ,  and 

(123a) 

(1 23b) 

ua = 0, (123c) 
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where the value of C (6) is such that ctr = 0.1. This problem was examined by Borgers and 

L a r ~ e n . ~ , ~ ~  For this cross section y is given by 

y = S2 (1 - [2 - e-2'6 (46-2 + 4s-1 + 2)] . 

As S +. 0, y -+ 2S2, so the 0 (y/S) term in Eq. (16) vanishes in the Fp limit. Thus the 

problem above is asymptotically described by the F'P equation as S -+ 0. 

In Figure 14 we plot the scattering ratios derived from the asymptotic form of the 

scattering cross section moments in Eq. (8) for A (r) = 1, y = 0, and various values of 6. We 

also plot the corresponding scattering ratios of the cross section given in Eq. (123c). As 6 + 0 

we see that the actual scattering ratios approach the asymptotic values. This demonstrates the 

validity of Eq. (8). Figure 14 also shows us when we might expect our transport solution to be 

close to the asymptotic Fokker-Planck limit. For example, a PIS cross section expansion for 

S = 0.001 is very close to the asymptotic expansion, so the corresponding discrete ordinates 

solution should be close to a pseudospectral Fokker-Planck solution of the same order. 

Next we examine SN solutions to Eq. (123) near the Fokker-Planck limit. For these 

studies we use L = 20 and S = 0.001. As boundary conditions we use a quasi-Mark 

approximation to Eqs. (123a) and (123b) in which all incorning fluxes are set to zero except 

at the quadrature direction pma closest to p = 1; we set $ (0, pms) = wma, where wmax 

is the corresponding (non-Galerkin) quadrature weight. This boundary condition has the 

effect of preserving the contribution to the boundary scalar flux from the beam in Eq. (123a). 

(We do not report the results of other calculations that use different boundary conditions, 

-1 

such as conditions which preserve the incident current.) Figure 15 shows the scalar flux 
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throughout the slab as calculated by the LM-Ss method using both the Lobatto-Galerkin 

and Gaussian quadratures. For these calculations we have used a very fine spatial mesh 

(200 cells, otrAx = 0.01) to minimize the effects of spatial discretization so that we may 

concentrate on the effects of the angular differencing. These SN results compare favorably 

with a pseudospectral Fokker-Planck solution of order 32. The Lobatto-Galerkin results are 

especially good; the Lobatto set includes the point /-I = 1, so its boundary condition is 

expected to be better than that used with the Gaussian set. We remark that a stable solution 

could not be obtained with the Lobatto set without the Galerkin quadrature treatment. These 

results demonstrate the need to use discrete-to-moments and moments-to-discrete operators 

that are inverses of each other, as well as the fact that SN solutions limit to Fokker-Planck 

solutions under proper conditions. 

We now examine the effects of spatial discretization on the SN solutions. In Figures 

16-18 we show DD-, LD-, and LM-& solutions, respectively, as 6 -+ 0. We also plot the 

corresponding DD- and LD-pseudospectral Fokker-Planck solutions as well as the highly 

refined FP solution that we showed in Figure 15. These figures show that as 6 --+ 0, the 

spatially discrete S8 solutions approach the spatially discrete FP solutions that we predicted 

in Chapter 111. We note that these discrete FP solutions are fairly accurate, especially the LD 

results. In Figures 19-21 we show similar results for S16 calculations; these solutions also 

have the expected behavior in the FP limit. 

We have not performed any similar computational tests in multidimensional settings, 

other than to demonstrate that a stable SN solution can be obtained when the Galerkin 

treatment is used. However, the excellent agreement with analysis in slab geometry gives 

us confidence that our FP analyses are accurate. 
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VI.B. ANMG Results 

In this section we present numerical results that support our ANMG analyses. At first we 

report results from problems using meshes and quadratures that directly correspond to those 

used in the Fourier analyses of Chapter V. We also implement the ANMG scheme in more 

complicated problems that are not amenable to Fourier analysis in order to demonstrate the 

performance of the ANMG method in realistic situations. 

Our numerical results are obtained by means of the PEIUCLES transport code. 

PERICLES is an unstructured mesh discrete ordinates code under development at Los Alamos 

National Laboratory.137 It can perform calculations on arbitrary generalized hexahedral 

meshes in one, two, or three dimensions. It uses the family of linear discontinuous methods 

(LD, BLD, etc.) with or without mass matrix lumping. The modified WLA operator is used 

for DSA. The Galerkin treatment may be used with the quadrature sets. 

V1.B. 1. Acceleration of Model Problems 

For comparisons with our Fourier analyses we nominally use a 25x25 rectangular mesh 

with reflective boundary conditions on two adjacent sides and vacuum boundary conditions 

on the other two sides; since we also use level symmetric quadrature sets this effectively 

gives us a 50x50 mesh with only vacuum boundaries. We initially perform a source iteration 

calculation without acceleration for each problem and mesh spacing in order to determine 

the effect of leakage, since we are trying to confirm infinite-media analysis results. If 

the resulting spectral radius is less than 0.99 (the spectral radius in infinite media without 

absorption is unity), the number of elements is doubled in the thinner direction until either the 

source iteration spectral radius is greater than 0.99 or the mesh size makes it computationally 
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.01 - 
.1 
1 
10 
100 
1000 

TABLE XVIII 

Mesh Sizes for Numerical Spectral Radii Tests 

200x200 I I 
50x400 50x50 
25x400 25x50 25x25 
25x400 25x50 25x25 25x25 
25x400 25x50 25x25 25x25 

25x50 25x25 25x25 

5 t A Y  
cftrAx .001 1 .01 1 .1 I 1 I 10 1 100 I 1000 
-001 

25x25 

infeasible to further increase the number of elements. The meshes used for each cell size 

are reported in Table XVIII. Only a few of the meshes with the thinnest cells yield source 

iteration spectral radii that are somewhat less than 0.99, so results from spectral radius tests 

with these meshes are expected to be close to the infinite media results. Meshes have not been 

created for cells widths u&x < 0.01 or at,Ay < 0.01 because leakage would be so great 

that the spectral radius results would not be expected to compare well with infinite-medium 

analyses. 

In our tests we use a uniform, isotropic fixed source and an initially random flux 

distribution. We nominally perform 300 iterations in order to eliminate all but the slowest 

converging error mode so that a good spectral radius estimate may be obtained, although 

in some cases it is necessary to use more iterations. The computational spectral radius is 

estimated by means of the techniques described in Appendix B. 

Our first set of tests are the S4-DSA, S6-DSA, and &-DSA iterations with BLD 

differencing and optimized Fp scattering on a variety of rectangular meshes. We report the 

results in Tables XIX-XXI. These numerical results correspond to the Fourier analysis results 

reported in Tables V-VII. Except for some slight differences with the most optically thin 



105 

TABLE XIX 

Numerical Spectral Radii, BLD S4-DSA (WLA) Iteration, Optimized FP Scattering 

U t A Y  
Q ~ A Z  .001 I .01 1 .1 I 1 1  10 I 100 1 1000 
.001 

0.87 
0.90 0.90 
0.90 0.90 0.90 
0.96 0.95 0.90 0.90 
0.99 0.99 0.99 0.90 0.90 

0.99 0.997 0.99 0.95 0.90 

meshes, which we attribute to leakage effects, the spectral radii are generally within 0.01 of 

the Fourier results for all meshes. Thus we have computationally confirmed these Fourier 

analyses as well as the need for better acceleration. 

Our next set of tests are the &-&-DSA, S&-&-DSA, and Ss-&-&-DSA iterations, also 

with BLD differencing and optimized FP scattering. The resulting computational spectral 

radii are reported in Tables XXII-XXIV. These tables correspond to Tables IX-XI. The 

numerical results are generally within 0.01 of the Fourier analyses. This confirms that the 

ANMG method is unstable without filtering for optically thin cells but stable when thicker 

cells are used. 

Next we examine the &-&-DSA-filter, &-&-&-DSA-filter, and S&-&-DSA-filter 

iterations with BLD differencing and optimized Fp scattering. The results are reported in 

TABLE XX 

Numerical Spectral Radii, BLD &-DSA (WLA) Iteration, Optimized FP Scattering 
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TABLE XXI 

Numerical Spectral Radii, BLD Ss-DSA (WLA) Iteration, Optimized FP Scattering 

u t r n y  

0.97 0.97 
100 0.997 0.99 0.97 

TABLE XXII 

Numerical Spectral Radii, BLD Sd-Sz-DSA (WLA) Iteration, Optimized FP Scattering 

utr Ay I 0 4 2  I .001 I .01 1 .1 I 1 I 10 I 100 I 1000 

.01 1.86 
.1 0.98 0.77 
1 0.64 0.64 0.65 

IO 0.88 0.88 0.78 0.65 
100 0.96 0.97 0.98 0.89 0.70 
1000 0.98 0.995 0.99 0.95 0.73 

TABLE XXIII 

Numerical Spectral Radii, BLD Ss-Sd-Sz-DSA (WLA) Iteration, Optimized Flp Scattering 

TABLE XXIV 

Numerical Spectral Radii, BLD Sg-S4-Sz-DSA (WLA) Iteration, Optimized FT Scattering 

a t r a y  
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utrA2 
.oo 1 

TABLE XXV 

Numerical Spectral Radii, BLD &-&-DSA-filter (WLA) Iteration, Optimized Fp Scattering 

a t r a y  
.001 I .01 1 .1 I 1 I 10 1 100 I 1000 

10 
100 
1000 

- I 0.58 1 I I I I I 

0.96 0.93 0.79 0.65 
0.99 0.98 0.98 0.89 0.70 

0.99 0.996 0.99 0.95 0.73 

TABLE XXVI 

Numerical Spectral Radii, BLD S~-&-Sz-DSA-filter (WLA) Iteration, OF 

Numerical Spectra Radj 

utr AY 

imized FP Scattering 

TABLE XXVII 

BLD &-S4-&-DSA-filter (WLA) Iteration, Optimized FP Scattering 
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TABLE XXVIII 

Numerical Spectral Radii, LBLD S4-Sz-DSA-filter (WLA) Iteration, Optimized FP Scattering 

~ 

100 
1000 

.01 

0.58 
0.63 
0.8 1 
0.97 
0.99 

.1 

0.63 
0.64 
0.94 
0.99 
0.996 

I i:;; 8::’s 1 0.72 
0.997 0.99 0.95 

1000 

0.74 

Tables XXV-XXVII, which correspond to Tables XIII-XV. We again see that the numerical 

spectral radii are close to the Fourier results. These results confirm that the filtered ANMG 

method is unconditionally stable and generally effective. The ineffectiveness for large aspect- 

ratio cells we attribute to the ineffectiveness of the DSA operator and not the ANMG scheme 

itself. 

The final Fourier analysis that we will confirm is the &-&-DSA-filter iteration with 

LBLD differencing and optimized FP scattering. The numerical results are reported in Table 

XXVIII, which corresponds to the Fourier results of Table XVI. The numerical results again 

are close to the Fourier results, which demonstrates the effectiveness of the filtered ANMG 

method with LBLD differencing. 

The spectral radius tests that we have reported in this section thus far have directly 

corresponded to problems that we Fourier analyzed in Chapter V. The only difference has 

been that the numerical tests were performed on finite grids, whereas our Fourier analyses 

were derived for grids that are infinite in extent. We now will perform spectral radius tests 

of the ANMG method for some problems that are still “simple”, but which are less amenable 
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TABLE XXIX 

Numerical Spectral Radii, Accelerated TLD S, Iteration, Optimized FP Scattering 

0.80 
100 0.94 0.80 
1000 0.94 0.80 

to Fourier analysis, in order to demonstrate the applicability of our Fourier results to other 

situations. 

In Chapter IV we stated that we would perform Fourier analyses only for two- 

dimensional problems; the effectiveness of the ANMG method in three dimensions would 

be confirmed by numerical testing. We report one such test here. We examine a problem 

with optimized Fokker-Planck scattering and no absorption on a 25x25~25 grid of cubic 

elements (Arc = Ag = Az) with reflective boundary conditions on three adjacent faces. 

We use trilinear discontinuous (TLD) spatial differencing and S4 level-symmetric angular 

differencing. Table XXIX records the numerical spectral radii for this problem with DSA and 

ANMG acceleration for several cell optical thicknesses. The ANMG method is clearly more 

effective than DSA for these cases. Although we suspect that there will be high-frequency 

instabilities for much thinner cells and that these instabilities can be eliminated by means of 

a diffusive filter, numerical tests in three dimensions would require a prohibitive number of 

elements so that leakage would not dominate the problem. 

Next we examine a multimaterial problem in 2D. Figure 22 depicts the physical problem. 

A central square region of one material is surrounded by a region of a second material. Both 

materials have FP scattering kernels without absorption. However, utr in the first material 

may be different from that in the second material. 
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Fig. 22. Multimaterial test problem. 

We model this problem with a uniform 50x50 mesh, BLD spatial differencing, and an S4 

quadrature. In Table XXX we report numerical spectral radius results from PERICLES for 

the case in which the central region is optically thick and the outer region is made increasingly 

optically thin. In Table XXXI we report similar results for an optically thick outer region and 

an increasingly thin central region. In all cases ANMG acceleration is at least as effective as 

DSA acceleration. However, as the differences in the material properties become extreme the 

effectiveness of both acceleration methods can degrade. The effectiveness of DSA does not 

degrade unless and until the ANMG spectral radius has become equal to that of DSA. Further 

increases in material differences may continue to degrade both methods, but their spectral 

radii are equal to each other then. 
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ntr,lAx ~ t r , 2 A ~  
lo00 1000 
1000 100 
1000 10 
1000 1 
1000 0.1 
1000 0.01 
1000 0.001 
1000 0.0001 

TABLE XXX 

DSA spectral radius 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 

Numerical Spectral Radii, Multimaterial Test Problem, Optically Thick Inner Region 

0.90 0.73 0.73 

ANMG spectral radius ANMG (filtered) spectral radius 
0.73 0.73 
0.73 0.73 
0.73 0.73 
0.73 0.73 
0.81 0.81 
0.82 0.82 
0.82 0.82 
0.82 0.82 

0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.92 
0.93 
0.93 

TABLE XXXI 

Numerical Spectral Radii, Multimaterial Test Problem, Optically Thick Outer Region 

0.73 0.73 
0.73 0.73 
0.74 0.73 
0.86 0.86 
0.90 0.90 
0.91 0.9 1 
0.92 0.92 
0.93 0.93 
0.93 0.93 

ctr,lAx 
1000 
100 
10 
1 

10-1 
10-2 
10-3 
10-4 
10-5 
10-6 

gtr,2Ax 
1000 
1000 
1000 
1000 
1000 
lo00 
1000 
1000 
1000 
1000 
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These results lead to several observations. Although there are optically thin regions in 

some of these cases, the unfiltered ANMG scheme remains stable. In fact, diffusive filtering 

of the ANMG corrections does not improve the spectral radius at all. If there are localized 

amplifications of error in the thin regions, then the thick regions may be stabilizing the 

problem. If a multimaterial problem were constructed that led to ANMG instabilities it is 

not known how effective a diffusive filter would be at stabilizing the iteration. 

It has been observed in other situations that DSA effectiveness can degrade when 

extreme differences in material properties exist in a problem.138 We observe here that the 

ANMG scheme also loses some effectiveness. However, the ANMG method relies on DSA 

as its lowest-order operator, so the multigrid scheme itself may not be the source of the 

spectral radius degradation. An effective multigrid method coupled with an increasingly 

ineffective DSA operator is consistent with our results. If the multigrid scheme is effective 

at accelerating all but the zeroth moment but the DSA operator is increasingly ineffective 

at accelerating the zeroth moment when material differences become extreme, then the 

spectral radius would increase. This behavior is consistent with the ANMG results of Table 

XXXI. On the other hand, if only DSA acceleration is used in a forward-peaked scattering 

problem, its inability to accelerate higher moments would control the spectral radius until 

the multimaterial degradation becomes so severe that the lack of effective zeroth moment 

acceleration dominates. This behavior is also consistent with the DSA results in Table 

=I. Although we have not proven that there are no multimaterial effects on the angular 

multigrid method’s ability to accelerate higher flux moments, it appears that problems with 

the DSA operator are the main cause of degradation in ANMG effectiveness for multimaterial 

problems. 
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VI.B.2. Acceleration of Electron-Photon Transport Problems 

We have analyzed and numerically tested the ANMG method in a variety of model 

problems. Now we will apply the ANMG method to the solution of a real transport problem. 

We choose to solve a coupled electron-photon problem. The transport of electrons involves 

highly forward-peaked scattering, as does photon transport when high-energy Compton 

scattering predominates. This type of problem is well suited to demonstrate the ANMG 

method. 

Before we describe the particular electron-photon problem to be solved, we will discuss 

certain features of this class of problems. In the transport of charged particles, including 

electrons, the energy loss due to Coulomb interactions is nearly continuous. One may separate 

out this energy loss term from the discrete scattering losses by introducing a a+/ dE term 

in the energy-dependent transport equation. This term is called the continuous slowing- 

down (CSD) operator. Whereas the discrete energy loss terms are usually modeled by the 

multigroup method, the CSD operator must be discretized separately to obtain an accurate 

solution. 

Another aspect of electron-photon transport problems is the coupling between the two 

particle types. Physically, electron interactions with a material may produce photons, and 

photon interactions may produce electrons. However, if the photon energy is not too high the 

electrons that it produces are relatively low in energy. These electrons have a short range and 

their energy is deposited in a small region. For such problems one may assume with little 

error that all of the electron energy is deposited locally, and therefore one does not need to 

consider the transport of photon-produced electrons. This decouples the problem; electrons 
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Fig. 23. Electron-photon transport test problem. 

produce photons but photons effectively do not produce electrons. Such decoupling aids the 

solution process. 

The physical problem we wish to solve is depicted in Figure 23. An isotropic, 

monoenergetic source of electrons is incident upon one face of a 2D aluminum shield that 

is 30 ml thick and 60 ml tall. The energy of the incident electrons is in the range 1-4 MeV. 

This problem was previously reported by Seltzer" and by Datta et al.28 

In our modeling we mostly duplicate the work of Datta et al. They divided the shield into 

a 20x40 mesh of square elements, to which they applied step characteristic differencing. They 

used an S12 quadrature with the Galerkin treatment. The electron calculation was decoupled 

from the photon calculation by assuming that all photon-produced electrons deposit their 
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Incident Energy [MeV] 
1 
2 
3 
4 

TABLE XXXII 

Dose, Datta et al. [MeV/g] Dose, PERICLES [MeV/g] 
1.754 2.070 
2.572 2.168 
2.931 2.219 
2.453 2.230 

energy locally. The CSD operator was discretized by the diamond difference method and 

the other energy loss terms were handled by the multigroup method. There were 40 electron 

groups and 40 photon groups of uniform width with a cutoff energy of 50 keV. Cross sections 

were obtained from the CEPXS cross section generation code.139 In our tests we use all of the 

same discretizations and physical data except that BLD spatial differencing is used instead of 

step characteristics. 

A dose profile in the shield as calculated by PERICLES for 1 MeV incident electrons is 

depicted in Figure 24. Although we do not have outside results to which we may compare 

this figure, the dose profile appears to be physically realistic. The cell average dose for one 

of the two cells in the center of the right side of the shield is reported in Table XXXII for step 

characteristics calculations2* and our PERICLES calculations. The two sets of results differ 

somewhat. However, we are interested primarily in acceleration results rather than accuracy, 

so we will not attempt to refine the solutions or to determine the main sources of error. Since 

this calculation is typical our acceleration results for this problem will be practically relevant. 

In Table XXXIII we report the number of within-group (inner) iterations and CPU 

times required by PERICLES to converge the solution to within relative error with 

both DSA and ANMG acceleration. The iteration count produced by ANMG acceleration is 

approximately half that produced by DSA acceleration, as is the CPU time required for the 

I 
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Fig. 24. Dose in aluminum shield, 1 MeV incident electrons. 
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TABLE XXXIII 

ANMG and DSA Performance, Electron-Photon Test Problem, DD-CSD Operator 

Incident Iterations, Iterations, Inner Inner Total Total 
Energy [MeV] ANMG DSA CPU [SI, CPU [SI, CPU [SI, CPU [SI, 

ANMG DSA ANMG DSA 
1 337 837 2656 5339 23409 26407 

4 465 912 I 3776 I 5751 I 24280 I 25332 I 
2 448 928 3568 5960 23486 26024 
3 I 459 1 928 1 3721 I 6044 1 25095 I 26491 1 

within-group calculations. However, in these problems the total CPU time is dominated by 

the calculation of downscattering sources; this time increases by the square of the number 

of energy groups. Since we are using a total of 80 groups, the time necessary for this 

calculation is significant. Nevertheless, ANMG acceleration does decrease the required total 

CPU time slightly from that required with DSA acceleration. We note that the performance 

of the ANMG method relative to DSA may be somewhat understated since we did not guard 

against false convergence, which would affect the DSA-accelerated calculation more than the 

ANMG-accelerated one. 

There is an option in PERICLES and CEPXS to apply a linear discontinuous 

discretization to the CSD operator instead of diamond differencing. The linear discontinuous 

differencing is more accurate, so one may use a coarser group structure to obtain results 

of similar accuracy. Since a coarser group structure would increase the amount of within- 

group scattering and reduce the downscattering term, one would expect a greater need for 

acceleration than with a fine group structure. Therefore we will examine some calculations of 

the above problem in which we use a linear discontinuous discretization of the CSD operator 

with a coarser group structure. We use 20 electron groups and 20 photon groups. The 

results are shown in Table XXXIV. Although the downscattering calculations still require a 
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Incident Iterations, 
Energy [MeV] ANMG 

TABLE XXXIV 

ANMG and DSA Performance, Electron-Photon Test Problem, LD-CSD Operator 
Iterations, Inner Inner Total 

DSA CPU [SI, CPU [SI, CPU [SI, 

1 21 1 
ANMG DSA ANMG 

710 5403 14138 19517 
2 215 
3 207 
4 207 

Total 
cpu [SI, 

DSA 
27703 
26900 
25910 
25235 

665 550 1 13278 19569 
614 5226 12284 19094 
579 5238 11636 19124 

substantial portion of the CPU time, the time required for the within-group calculations when 

DSA is applied is significant, whereas when the ANMG method is applied the within-group 

CPU time is a small fraction of the total CPU time. 

The results of this chapter confirm that one may obtain S, results that are equivalent to 

discrete Fokker-Planck solutions in the limit of forward-peaked scattering, provided that the 

scattering source is calculated correctly and that the scattering kernel itself is Fokker-Planck 

in nature, This chapter also has confirmed that the ANMG method is a stable and effective 

acceleration method when the ANMG corrections are diffusively filtered and the scattering is 

highly forward-peaked. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

VII.A. Conclusions 

In this work we analyzed the solutions of certain transport discretizations in the Fokker- 

Planck (FP) limit. We compared the properties of these solutions to those of the analytic 

solutions, discovering the conditions under which a reasonable discrete solution will be 

obtained. We examined the acceleration of the iterative solution of these transport schemes 

in the FP limit and extended a previously developed angular multigrid scheme to the 

multidimensional setting. Our analyses show that this acceleration method is effective at 

reducing the computational cost for the solution of such problems. 

The analyses of the spatially analytic discrete ordinates (SN)  equations revealed that if 

the analytic transport solution does not satisfy a Fokker-Planck equation in the Fp limit (a 

condition determined solely by the scattering kernel) then the discrete solution will not satisfy 

a discretized Fokker-Planck equation. However, if the analytic solution does satisfy a FP 

equation and if the moments-to-discrete and discrete-to-moments operators of the S, method 

are inverses of each other, then the SN solution will satisfy a pseudospectral discretization of 

the Fokker-Planck equation. If the moments-to-discrete and discrete-to-moments operators 

are not inverses of each other, then the SN method will fail in the FP limit. Since this is 

true in most SN implementations, these methods will fail to produce reasonable results for 

forward-peaked scattering problems unless their scattering treatments are modified. These 

results were extended to spatially discretized S N  equations. If the spatially analytic SN 

solution satisfies a pseudospectral FP equation, then the solutions to several spatially discrete 
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SN schemes will satisfy spatially discretized pseudospectral FP equations. The spatially 

discrete S N  methods that were examined are, in one-dimensional slab geometry, the diamond 

difference, linear discontinuous, and linear moments methods, and in two dimensions the 

bilinear discontinuous, lumped bilinear discontinuous, and simple corner balance methods. 

In order to accelerate the iterative solution of SN methods when the scattering is 

highly forward-peaked, we extended the angular multigrid (ANMG) acceleration method to 

multidimensional calculations. Our analyses revealed that a straightforward application of 

this method is subject to high-frequency instabilities. These instabilities are always present 

in spatially analytic problems and in spatially discrete problems whose cells are optically 

thin. We developed a diffusion filter for the multigrid corrections that eliminates these 

instabilities. The resulting scheme is far more effective than DSA alone for highly forward- 

peaked scattering problems. 

VII. B. Recommendations for Future Work 

During the course of this work we identified some areas of research that warrant further 

attention. In this section we summarize these research topics. 

1. Non-FP limit analysis. The analysis of transport solutions in the Fokker-Planck limit 

revealed that for some scattering kernels the analytic solution does not satisfy a Fokker-Planck 

equation. This forward-peaked limit analysis should be extended to determine if SN solutions 

to these problems satisfy a discrete version of the corresponding non-FP limit. 

2. Accuracy of discrete FP equations. We have found that if the analytic transport 

solution satisfies a FP equation, then the solution to an SN scheme that handles the scattering 

term carefully will satisfy a pseudospectral FP equation. The discretization errors of these 

FP equations are not entirely known. For example, if the analytic solution contains a delta 
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function, then the discrete solution cannot strongly converge to the exact solution. However, 

the weak convergence properties are unknown. Even if the discrete solution is highly 

inaccurate for pointwise angular flux values, integrated quantities such as scalar fluxes may 

be more accurate. 

3. Better DSA and filter operators. The DSA and associated filter operators that were 

used in most of the analyses and all of the numerical tests become ineffective when the cells 

have large aspect ratios. This is a general problem; it is not limited to transport problems that 

have highly forward-peaked scattering. The search for unconditionally effective and easily 

solved diffusion operators should continue. 

4. Combined angular and spatial multigrid. The angular multigrid instabilities occur in 

modes that are attenuated somewhat by source iteration alone; it is not absolutely necessary 

to accelerate these modes. In order to stabilize the ANMG scheme we actually eliminate the 

high-frequency corrections anyway. An alternative would be to define a combined angular 

and spatial multigrid method. Such a method would not produce corrections for those 

modes that are unstable in the ANMG scheme, assuming that the spatial grid is sufficiently 

coarsened. It would, however, produce approximately the same corrections for low-frequency 

modes, since such modes are not greatly affected by spatial discretization. Because of the 

coarsened spatial mesh this scheme could be more rapidly solved than the ANMG scheme; 

since no filter would be necessary there would be additional computational savings. 
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APPENDIX A 

DIFFUSION AND FILTER OPERATORS FOR DFEM 

DISCRETIZATIONS IN X-Y GEOMETRY 

In Chapter V we performed Fourier analyses of the ANMG method as applied to DFEM 

discretizations in x-y Cartesian geometry. These transport iterations use diffusion operators 

for DSA and for the filtering of ANMG corrections. We examined two specific diffusion 

operators in our analyses: the modified 4-step method”’ and the modified WLA method. 137 

We present these operators here. 

The first method, the modified 4-step method, is a simplification of the well-known 4- 

step methodlo3 for deriving DSA operators. A detailed derivation of this method for the 

general class of DFEM discretizations is presented in reference 109. We will not present the 

derivation here; we will simply present the resulting equations. Furthermore we will restrict 

our attention to a uniform, infinite rectangular mesh with constant material properties. The 

modified 4-step method for the DFEM discretizations presented in Chapter III is given by 



D 
Ax J,” (Xi)  = -- ( ’p2, i j  - ‘p1,ij) 7 

D Jy” (Yj)  = -- (94,i j  - ’p1,iJ 7 AY 

1 1 
J,‘ (xi-;) = + 2 J,’ ( ~ - 1 )  ~ 9 ~ , ~ ~  - 5 J,’ (xi)] , 
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(A. la) 

(A. lb) 

(A. lc) 

(A. 1 d) 

(A. 1 e) 

(A. 1 h) 

(A.li) 

where Q M 0.25 (the exact value depends on the quadrature set), D = 1 /3at is the diffusion 

coefficient, M is defined in Eq. (460)~ and G and H are defined as 

f 

1 
3 
- 

G = <  

\ 

SCB 
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H =  

1 
3 
- 

2 1 0 0  
1 2 0 0  
0 0 2 1  
0 0 1 2  

, BLD, LBLD 

(A. 1 k) 

SCB 

Here Jf (xi) is the modified 4-step approximation to the net current in the x-direction in 

the bottom half of the cell, and Jf ( ~ + ~ , z )  is the net current in the x-direction along the 

bottom half of the left boundary of the cell. The other J variables have analogous physical 

interpretations. The exact definition of q depends on how the diffusion operator is applied. In 

DSA it is the residual scattering source. The above method may also be used as an ANMG 

filter by replacing na with nt and by defining q to be the product of ut and one of the moments 

of the ANMG correction term. 

The modified 4-step method has been shown to be an unconditionally stable and 

effective DSA operator for many different DFEM discretizations. In Chapter V we 

demonstrated its effectiveness as an ANMG filter for a few DFEM discretizations. However, 

in multidimensional calculations the modified 4-step equations are generally difficult to solve. 

Wareing'37 has developed an approximation to these equations that is less effective but easier 

to solve. It consists of a continuous FEM diffusion equation (which is easier to solve); the 

continuous solution is used to construct an approximate discontinuous solution. To derive 

this method we begin with Eq. (A.l), but we ignore the definitions of the boundary currents 

in Eqs. (A. If)-(A. li), yielding the following intermediate set of equations: 
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Ax 
+-H 2 

We now derive a continuous FEM diffusion equation from Eq. (A.2). We first assume 

that all four flux values located at the same vertex are equal: 

Next we add the individual equations from Eq. (A.2) that are associated with the same node, 

Le. the first row of Eq. (A.2) as defined in cell i, j, the second row as defined in cell i - 1, j, 

etc. Given the definition of G and H in Eq. (A. l), the edge current terms all cancel, yielding 

a single equation in terms of the nodal fluxes: 
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+Pi-l,j+l ‘pi- 5 ,j+ ; + Pi+l,j-l vi+ ; ,j- ; + Pi+l,j+l ‘pi+ ; ,j+ 4 

(A.4a) 

(A.4b) 

(A.4c) 

(A.4d) 

(A.4e) 

(A.40 

In defining Eq. (A.4) we have made use of the symmetries of M, G, and H. Equation (A.4) is 

a symmetric nine-point operator (five-point for SCB), which may be solved easily by a variety 

of methods. Although we derived it differently here, this equation is actually an asymptotic 

diffusion limit of the D E M  schemes we are studying.73 Therefore we can expect it to give 

reasonable acceleration of diffusive error modes. 

Since the discretizations we are examining are discontinuous, we need to somehow map 

the continuous solution onto the discontinuous variables. One simple way is to use the 

assumption of Eq. (A.3), i.e. to let the “discontinuous” solution be in fact continuous. An 
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alternative approach is to consider all the variables in a given cell as unknowns but to use the 

continuous solution in adjacent cells to construct an incoming partial current; this decouples 

all of the cells, each of which can be easily inverted directly. To construct the discontinuous 

update equations with this approach we first express the net currents at the boundaries as the 

difference between the incoming and outgoing partial currents: 

J," (xi-;) = J,"' (xi-;) - J,"- (xi-+) , 

J,' (xi-+) = JT' (xi-+) - JT- (xi-+) , 

J: (yj-J = J:+ (yj-;) - J:- ( y j - ; )  ' 

Jy R ( Yj-5 1) = J? (yj-a> - J;- (yj-;) . 

where the outgoing currents may be expressed in terms of the upstream values: 

9 1 , i j  J,B (xi) 
2 '  J,"- (xi-l> = - - 

P1,ij JYL' (Yd 
J i -  (yj-i) = - -- 4 2 '  

(P2,ij J,B (Xi) 
+ J,"' (xi++) = 4 

4 

2 '  

Jf-(y. ;) = 7-- (P2,ij JyR (YA 
3-- 2 '  

+- 2 '  J:' (xi+;) = 4 (P3,ij J,T (Xi) 

(A.5a) 

(A.5b) 

(A%) 

(ASd) 

(A.6a) 

(A.6b) 

(A.6c) 

(Add) 

(A.6e) 

(A.6f) 
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Next we recognize that in the continuous diffusion solution the sum of these partial currents 

is related to the corresponding nodal fluxes: 

By combining Eqs. (A.5)-(A.7) we obtain alternative expressions for the net edge currents 

that contain unknown values from only a single cell: 

(A.8a) 

(A.8b) 

(A%) 

(A.8d) 

(A.8e) 

(A.80 
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We substitute Eqs. (A.8) into Eq. (A.la), which eliminates the currents. The resulting 

discontinuous update equation is: 

r v1,ij 1 
(aAyG + aAzH + a,AzAyM) 

= (aAyG + aAxH) 

The DSA method of Wareing is unconditionally stable and easily solved, but it loses 

effectiveness as the cells become highly elongated. The analyses of Chapter V show that this 

method is stable when used as an ANMG filter and effective when cell aspect ratios are not 

too large. 
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APPENDIX B 

NUMERICAL ESTIMATION OF COMPLEX EIGENVALUES 

In Chapter VI we performed numerical tests of the ANMG method by means of the 

transport code PEMCLES. Our main objective was to determine the iterative spectral radii in 

order to confirm our Fourier analyses. Although the numerical estimation of a spectral radius 

is relatively simple when the dominant eigenvalue is real, a good estimate is more difficult to 

obtain when a complex conjugate pair of eigenvalues is dominant. Since our Fourier analyses 

reveal that most of our iterations with forward-peaked scattering have dominant eigenvalues 

that are complex, this is an important subject to consider. We describe here a method for 

obtaining a numerical estimate of the spectral radius in such a situation. 

We begin by examining the case when the dominant eigenvalue is real. Let A be a real 

be an initial linear iteration matrix for a system of equations with solution @, and let 

guess at the solution. We may rewrite @('I in terms of @ and the error e('): 

Let {VI, - - - VI} be the eigenvectors of A. We may rewrite the error in terms of these 

eigenvectors: 

1 

i=l 

The following expression for the error at an arbitrary iteration is well known: 

1 1 

a= 1 i=l 
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where wi is the eigenvalue associated with eigenvector vi. Therefore the approximate solution 

at any iteration is given by 

i=l 

Now we assume that the dominant eigenvalue, urnax, is real and distinct, i.e. that 

\ u m = l  = w,, = a. For n sufficiently large all other components of the error become 

negligible compared to the dominant component, yielding the following asymptotic form for 

the approximate solution: 

The usual method for estimating c during an iterative calculation is to take the ratio of the 

norms of successive residuals: 

Equation (B.6) is exact when the error is composed of only the dominant eigenvector. It will 

be inexact when there are other error modes present, but its accuracy will increase as the 

iterations continue and the non-dominant modes are effectively eliminated. 

Now let us assume instead that A has a pair of complex conjugate eigenvalues that are 

dominant. We will further assume that there are no other eigenvalues of equal magnitude. 

The dominant component of the initial error then is given by 
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where vr$= is the complex conjugate of vm,. Therefore after n iterations the dominant 

component of the error is 

Let urn, be given in complex polar coordinates by (a? 4) and let v,, be given in complex 

Cartesian coordinates by (f,ig). Substitution of these values into Eq. (B.8) yields, in 

Cartesian coordinates, 

(an {F cos (n4) + G sin (n4)) 0) I (B.9) = 

where 

F = 2 (aof - bog) , (B.lOa) 

G = -2 (bof + aog). (B.lOb) 

Since both the error and the solution are real, we will suppress the complex notation in the 

rest of the analysis. If we combine Eqs. (B.4) and (B.9) and assume that a sufficient number 

of iterations has been completed to effectively eliminate the non-dominant error modes, we 

obtain the following expressions for the iterative solution and residual: 

dn) = + + un [F cos (n4) + G sin (n4)l (B.lla) 

r(") = F [an COS (n4) - on-' COS ( (n - 1) 4)]  

+G [a" sin (n4) - a"-lsin ((n - 1) $)] . (B. 1 lb) 
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Note how the residual differs from that of Eq. (B.6), where the dominant eigenvalue is real. 

If we attempt to use Eq. (B.6) to estimate the spectral radius when the dominant eigenvalues 

are complex conjugates, our estimate could be very inaccurate. For example, if G = 0 then 

the real spectral radius estimate is given by 

I -  d cos ( (n  + 1) $) - cos (.$) 
a cos (n$) - cos ( (n  - 1) 4) a e s t  = CJ 

Depending on the value of n and $, the estimate can cycle through a wide (even infinite) 

range of values. Clearly we need an estimate that takes into account the potentially complex 

nature of the eigenvalues. 

If we examine Eq. (B.l lb) we see that the unknown quantities are F, G, a, and 4; we 

obtain dn) from our computations at each iteration. We are most interested in a and perhaps 

4. We can obtain expressions for F and G in terms of the other parameters by using two 

successive residuals: 

(B.13a) 1 
det 

dn) [an+' sin ( (n  + 1) 4) - nn sin (n$)] 

-dn+') [an sin (n4) - an-'sin ( (n  - I) $)] 
F = - {  

(B.13b) 1 
det 

dn+l) [an cos (n4) - on-' cos ( (n  - 1) $)] 
-dn) [an+' cos ( (n  + 1) 4) - nn cos (n$)] 

G = - {  
where 

det = a2n [cos (n$) - a-' cos ( (n  - 1) 4)] [asin ( (n  + 1) #) - sin (n$)] 

-a2n [a cos ( (n  + 1) 4) - cos (n4)l [sin (n4) - a-' sin ( (n  - 1) 4)] . (B. 14) 
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We need the next two residuals to obtain independent equations for a and 4: 

r(n+2) = F [on+2 cos ((n + 2) 4) - on+l cos ((n + 1) 4)] 

+G [an+2 sin ( (n  + 2) 4) - on+' sin ((n + 1) 4)] , 

dnf3)  = F [an+3 cos ( (n  + 3) 4)  - an+2 cos ((n + 2) 4)]  

+G [an+3 sin ((n + 3) 4) - onf2 sin ((n + 2) 4)] . 

(B.15a) 

(B.15b) 

If we substitute Eqs. (B.13) into Eqs. (B.15) we obtain two nonlinear vector equations with 

the two unknowns a and 4. There are actually only two independent scalar equations; the 

equations from any non-zero element of the residuals are equivalent to those obtained from 

any other component. Therefore in practice we may simply choose an arbitrary algebraically 

non-zero component of the residuals in order to determine o and 4. 

The two nonlinear equations derived above require a nonlinear solution method. For 

our computational experiments we use a method similar to the one we used to determine the 

theoretical spectral radii in the Fourier analyses of Chapters IV and V. We define a grid of 

points in (a, 4) space and substitute each set of values into the right sides of Eqs. (B.15) to 

obtain two estimated residuals. We add the absolute values of the differences between these 

estimates and the actual residuals to define an error. The (a, 4) pair that has the lowest error is 

used as the center for a finer set of grid points and the process is repeated. Successively finer 

sets of test points are used until the enor is smaller than some tolerance. We note that because 

of the sinusoidal terms in Eqs. (B.15) there may be multiple roots; we have not developed a 

solution strategy to avoid false roots. In practice this has not been a serious problem. 
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Note some qualitative differences between this spectral radius estimate and the simpler 

one, which is valid only for real eigenvalues. In the real case we only calculate a ratio, 

whereas in the nonlinear case we must find the roots of two nonlinear equations. This requires 

the implementation of a good nonlinear root solver. In practice this has not been difficult, nor 

has it appreciably increased the computational time. In the real case we take a norm of the 

residual, whereas in the complex case we only examine the values of a single component 

of the residual; applying a norm to these residuals would greatly complicate the equations 

and probably make their solution impractical. Finally, in the real case the iteration count n 

is effectively eliminated from Eq. (B.6); in the complex case it cannot easily be eliminated. 

However, gince e(O) is arbitrary, we may define any iteration as the initial iteration in order to 

reduce n and simplify our equations. 

The complex eigenvalue estimate is, like the real estimate, subject to the constraint that 

all but the dominant error modes have been eliminated; during the transient phase the complex 

estimate will not be exact. The estimate also may be in error if there are other eigenvalues of 

the same magnitude as the “dominant” eigenvalue pair but with different phases; our analysis 

has not included this case. 

As a demonstration of the behavior of these two methods we perform an &-DSA 

calculation in PERICLES with BLD differencing and optimized Fp scattering. Our first 

test is on a mesh with utrAx = atrAy = 1. From Table XIX we see that the theoretical 

spectral radius is 0.90; the dominant eigenvalue is complex. We report the spectral radius 

estimates for certain iterations in Table XXXV. The estimate obtained by assuming that 

the dominant eigenvalue is real varies greatly and never approaches a single value. The 

complex estimate, however, fluctuates between good and poor estimates during the early 
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TABLE XXXV 

Numerical Spectral Radius Estimates, Complex Dominant Eigenvalue 
- 
n 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
225 
250 
275 
300 
325 
350 
375 
400 
425 
450 
475 
500 

- 0: Eq. (B.6) 
0.3603 
1.407 1 
0.7053 
8.1874 
0.9405 
0.2722 
1.3046 
0.6684 
4.7604 
0.9058 
0.1886 
1.2304 
0.6329 
3.0688 
0.875 1 
0.1509 
1.1720 
0.5966 
2.3844 
0.8462 
4.1773 
0.8 183 
4.8405 
0.7906 
3.5989 
0.7626 
2.745 1 
0.7342 
2.2545 
0.7050 
1.9480 
0.6747 

c: Eqs. (B.15) 1 4: Eqs. (B.15) 
0.9299 0.4159 
1.3 849 
0.6899 
0.903 1 
0.9038 
0.9035 
1.2899 
0.6549 
0.9035 
0.8949 
0.9037 
1.2199 
0.6199 
0.903 8 
0.8649 
0.9038 
1.1649 
0.5849 
0.9039 
0.9038 
0.9039 
0.9038 
0.9040 
0.9038 
0.9040 
0.9038 
0.9040 
0.9038 
0.904 1 
0.7049 
0.904 1 
0.9042 

0.0628 

0.4407 
0.4422 
0.4412 

-0.0628 

-0.0628 
-0.0628 
0.4412 

0.4412 
0.0628 

0.44 13 

0.4412 

-0.0628 

-0.0628 

-0.0628 

-0.0628 
-0.0628 
0.4412 
0.4412 
0.4412 
0.44 1 1 
0.4412 
0.44 1 1 
0.4412 
0.44 1 1 
0.4412 
0.441 1 
0.441 1 
-0.0628 
0.441 1 
0.44 1 1 

iterations and eventually settles on a single good estimate. It is not surprising that there are 

fluctuations during the initial iterates, since even if the dominant error mode is larger than 

the other modes, its complex nature occasionally causes it to assume a low real value, and 

the corresponding residual is more greatly affected by the other modes. Eventually, however, 

these other modes become so small compared to the dominant eigenmode that poor estimates 

are rarely obtained. 
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TABLE XXXVI 

Numerical Spectral Radius Estimates, Real Dominant Eigenvalue 
n 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
1 60 
170 
180 
190 
200 
225 
250 
275 
300 
325 
350 
375 
400 
425 
450 
475 
500 - 

u: Eq. (B.6) 
0.3606 
1.4046 
0.7024 
8.9839 
0.9344 
0.2520 
1.2849 
0.6587 
3.2789 
0.8987 
0.7 182 
1.0483 
0.9587 
0.9895 
0.987 1 
0.9883 
0.9890 
0.9898 
0.9906 
0.9914 
0.993 1 
0.9944 
0.9952 
0.9957 
0.9961 
0.9962 
0.9964 
0.9964 
0.9965 
0.9965 
0.9966 
0.9966 

u: Eq. (B.15) 
0.8955 
1.3949 
0.6899 
0.903 1 
0.9199 
0.9023 
1.2649 
0.6399 
0.8946 
0.8949 
0.9480 
0.7689 
0.8786 
1.2950 
0.9999 
0.9200 
0.9648 
0.9946 
0.9932 
0.9861 
0.9953 
0.9956 
0.9957 
0.9959 
0.9960 
0.9960 
0.9961 
0.996 1 
0.9962 
0.9962 
0.9962 
0.9962 

(6: Eq. (B.15) 
0.4436 
-0.0628 
-0.0628 
0.4430 

0.441 1 
-0.0628 

-0.0628 
-0.0628 
0.4425 

0.4662 
0.5520 
0.2815 
0.1634 
0.0000 
0.01 16 
0.0428 
0.0000 
0.0000 
0.0112 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
o.oO0o 
0.0000 
0.0000 
0.0000 

-0.0628 
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To demonstrate the behavior of the spectral radius estimates when the actual dominant 

eigenvalue is real, we perform the same computation on a mesh in which ntrAx is increased 

to 1000. The results are reported in Table XXXVI. During the early transient period the 

real estimate fluctuates greatly, whereas the complex estimate gives more reasonable values. 

Sometimes the complex estimate has a value close to the spectral radius of the previous case 

(0.90); this particular eigenvalue must still be present, even if it is not the dominant one now. 

After sufficient iterations have occurred both the real and the complex estimates approach 

a value close to unity, and the estimated phase is zero. This is close to the spectral radius 

predicted by the Fourier analysis in Table XIX. Since a real eigenvalue is a special case of a 

complex eigenvalue, the complex estimate works well in this situation. Therefore we observe 

that the spectral radius estimation method that takes into account the potentially complex 

nature of the dominant eigenvalue is more robust than the one that assumes that the eigenvalue 

is real. 

Finally, we note that a somewhat better real estimate may be obtained by calculating a 

geometric mean over several iterations. In the special case when a complex conjugate pair of 

eigenvalues are dominant and G = 0, we have the estimate 

cos ( (n  + IC - 1) #) an+k cos ( (n  + I C )  4)  - an+k-l II bn cos (n4) - CP-1 cos ( (n  - 1) #) ' bes t  = I 
(7 cos ((n + k )  4)  - cos ( (n  + k - 1) 4)  

ncos (n4) - cos ( (n  - 1) #) = /I 7 (B.16) 

where k is the number of iterations over which the geometric mean is taken. A similar but 

more complicated relation is obtained if G # 0. Although the absolute value term in Eq. 

(B.16) will fluctuate as much as the absolute value term in Eq. (B.12), taking its kth root 
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makes it closer to unity. For k sufficiently large the estimate becomes test M n. In practice, 

however, k needs to be quite large for the estimate to be decent, and in the cases studied the 

complex estimate has always had greater precision. 
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