Advanced material distribution measurement in multiphase flows: A case study

PDF Version Also Available for Download.

Description

A variety of tomographic techniques that have been applied to multiphase flows are described. The methods discussed include electrical impedance tomography (EIT), magnetic resonance imaging (MRI), positron emission tomography (PET), gamma-densitometry tomography (GDT), radiative particle tracking (RDT), X-ray imaging, and acoustic tomography. Also presented is a case study in which measurements were made with EIT and GDT in two-phase flows. Both solid-liquid and gas-liquid flows were examined. EIT and GDT were applied independently to predict mean and spatially resolved phase volume fractions. The results from the two systems compared well.

Physical Description

12 p.

Creation Information

George, D.L.; Ceccio, S.L.; O`Hern, T.J.; Shollenberger, K.A. & Torczynski, J.R. August 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A variety of tomographic techniques that have been applied to multiphase flows are described. The methods discussed include electrical impedance tomography (EIT), magnetic resonance imaging (MRI), positron emission tomography (PET), gamma-densitometry tomography (GDT), radiative particle tracking (RDT), X-ray imaging, and acoustic tomography. Also presented is a case study in which measurements were made with EIT and GDT in two-phase flows. Both solid-liquid and gas-liquid flows were examined. EIT and GDT were applied independently to predict mean and spatially resolved phase volume fractions. The results from the two systems compared well.

Physical Description

12 p.

Notes

OSTI as DE98007102

Source

  • 1998 international mechanical engineering congress and exposition, Anaheim, CA (United States), 15-20 Nov 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98007102
  • Report No.: SAND--98-1766C
  • Report No.: CONF-981107--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 674598
  • Archival Resource Key: ark:/67531/metadc709456

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Nov. 10, 2015, 6:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

George, D.L.; Ceccio, S.L.; O`Hern, T.J.; Shollenberger, K.A. & Torczynski, J.R. Advanced material distribution measurement in multiphase flows: A case study, article, August 1, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc709456/: accessed August 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.