TITLE: Comparison of Simulations With Measurements for the LEDA LEBT H^* Beam

SUBMITTED TO: 1999 Particle Accelerator Conference (PAC99)
New York, New York
29 March - 2 April 1999

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
COMPARISON OF BEAM SIMULATIONS WITH MEASUREMENTS FOR THE LEDA LEBT H+ BEAM

H. Vernon Smith, Jr., Terry Figueroa, Lash D. Hansborough, Margye Harrington, Kenneth Johnson, Debora Kerstiens, Subrata Nath, Joseph D. Sherman, Ralph R. Stevens, Jr., Michael Thuot, Lloyd M. Young, and Thomas J. Zaug
Los Alamos National Laboratory, Los Alamos, NM 87545

Adrian H. Arvin, A. S. Bolt, and Mitchell C. Richards
Westinghouse Savannah River Corporation

James H. Kamperschroer
General Atomics Corporation

Abstract

The Low-Energy Demonstration Accelerator (LEDA) injector is designed to provide 75-keV, 110-mA, proton beams for the LEDA RFQ. After testing the LEDA injector using a 1.25-MeV, CW RFQ, we shortened the low-energy beam transport (LEBT) to 2.69 m, replaced the first LEBT solenoid with one that has a shorter length but the same focusing power, and installed and operated the LEDA injector in the beam tunnel. In this paper we use the TRACE, SCHAR, and PARMELA computer codes to model the proton beam for the as-installed LEBT and we compare the results of these simulations with the LEBT beam measurements. We use the computer code PARMTEQM to transport the SCHAR- and PARMELA-generated beams through the RFQ so that we can compare the predicted RFQ performance with the measured RFQ performance. For a 100-mA, 0.239-nm-mm-mrad input beam, PARMTEQM predicts the LEDA RFQ transmission will be 92.2%.

1 INTRODUCTION

The LEDA injector [1] was tested under operating conditions by altering the ion-source extraction system from a tetrode at 75 keV to a triode at 50 keV [2] and injecting the hydrogen beam into a 1.25-MeV, CW RFQ [3]. The LEDA microwave-driven source beam (50 keV, 70-100 mA, \(\pm 90\% \) H\(^+\) fraction) was matched to the RFQ [3] using the two-solenoid, gas-neutralized low-energy beam transport (LEBT) [4] described in Ref. [2]. Two steering-magnet pairs provided the desired beam centroid position and angle at the RFQ match point. Beam neutralization of 95-99\% occurred in the LEBT residual hydrogen gas [5]. The RFQ accelerated the beam to 1.25 MeV and a simple HEBT transported that beam to a beamstop. The RFQ transmission and spatial profiles were measured as a function of injected current and LEBT solenoid excitations [2]. The expected beam performance was calculated using the computer codes TRACE [6] and SCHAR [7] to model the LEBT [8], PARMTEQM [9] to model the RFQ, and PARMELA [10] to model the HEBT. Excellent agreement between the simulations and the measurements was obtained (see Table 2 of [11]).

Ultimately we will compare the beam measurements with simulations of the LEDA LEBT, RFQ, and HEBT. In this paper we report the first step toward obtaining these end-to-end simulations — comparison of the as-installed LEDA LEBT measurements with simulations. We also report predictions for the RFQ transmission using the simulated beam as input. Our procedure is as follows. The hydrogen beam is first characterized using the Emittance-Measuring Unit (EMU), Fig. 1. We use these results and the TRACE code to get the input parameters for the SCHAR code. We iterate on the input parameters until SCHAR reproduces the measured phase space. Then the LEBT beam line, from the extractor to the RFQ match point (Fig. 1), is simulated and the resulting SCHAR-generated beam is transported through the RFQ using PARMTEQM to predict the RFQ performance. A preliminary study of the LEDA LEBT is reported in [8].

2 INPUT PARAMETERS

The input H\(^+\) beam parameters are determined from phase-space measurements of the LEDA injector beam...
using the EMU (Fig. 1). Beams with 50-, 80-, and 111-mA total current are characterized using the EMU. Assuming the proton fraction is \(\approx 90\% \), the resulting \(H^+ \) currents are 45-, 72-, and 100 mA, respectively. Using TRACE [6], with the rms normalized emittance \(\varepsilon_N \) and Twiss parameters \(\alpha \) and \(\beta \) at 10% threshold as input, the beam is drifted back along the 3.28-m long LEBT, from the EMU to the ion source, as a function of the un-neutralized current. The un-neutralized current that gives the predicted \(H^+ \) beam size closest to that of the 8.6-mm-diam ion source emitter is noted, and the resulting \(\alpha \) and \(\beta \), as well as \(\varepsilon_N \), are used as input to the first round of the SCHAR simulations.

3 LEDA LEBT SCHAR SIMULATIONS

The LEBT, in both the EMU and the RFQ configuration, is simulated with the non-linear space-charge computer code SCHAR. These simulations use a 4-volume distribution and the line mode with 999 lines. The LEBT dimensions are extractor to solenoid 1, 87.7 cm; solenoid 1 to solenoid 2, 140.4 cm; solenoid 2 to EMU, 100.1 cm; and solenoid 2 to RFQ match point, 40.7 cm. Beam neutralizations of 95-99\% are used [5], depending upon the results of the TRACE-backs. In all cases SCHAR predicts no proton beam loss in the LEBT.

SCHAR Input Parameter Determination

Using the TRACE parameters as SCHAR* [7] input, and scaling them using \(\alpha_{\text{new}} = \alpha_{\text{old}} \varepsilon_{\text{old}} / \varepsilon_{\text{new}} \) and \(\beta_{\text{new}} = \beta_{\text{old}} \varepsilon_{\text{old}} / \varepsilon_{\text{new}} \), gives the measured \(\varepsilon_N \) at the EMU to within 0.1%, usually within two iterations. The resulting SCHAR-predicted input beams (Table 1) have \(\varepsilon_N \) lower than that measured at the EMU because of predicted emittance growth in the LEBT transport (primarily arising from aberrations in the LEBT solenoid lenses). When SCHAR transports the beam parameters in Table 1 through the 3.28-m LEBT, the approximate phase-space shapes at the 10% contour and beam profiles at the video diagnostics are reproduced. The agreement between the SCHAR-predicted phase space at the EMU and the measured phase space is shown in Fig. 2. The centroid and amplitude of the videocamera data in Fig. 3 have been normalized to display the match to the SCHAR-predicted profile.

SCHAR Simulations of the LEDA LEBT

Using the input data from Table 1, SCHAR is used to predict the best match to the RFQ for the 2.69-m-long LEBT. The sample in Fig. 4 is for the 100-mA input beam with \(B_{\text{sol}1} = 3052 \text{ G} \) and \(B_{\text{sol}2} = 3650 \text{ G} \), giving \(\varepsilon_N = 0.238 \pi \text{ mm mrad} \) at the RFQ match point. Our previous experience [11] is that the actual \(B_{\text{sol}1} \) setting is close to the SCHAR prediction whereas the actual \(B_{\text{sol}2} \) setting is 10% higher than the SCHAR prediction. The \(B_{\text{sol}2} \) setting is underestimated because of the absence in the SCHAR model of the un-neutralized section of beam transport just in front of the RFQ. Most of the SCHAR-calculated emittance growth is due to spherical aberrations in solenoid #1 and solenoid #2 (Table 2). SCHAR predicts that the non-linear, space-charge-induced emittance growth in the LEBT is low compared to the overall emittance growth — 2.1% vs. 57.2\% for the 45-

Table 1. SCHAR input \(H^+ \) beam parameters for the three input beams. For these cases, \(v_o = 3.790 \times 10^6 \text{ m/s} \).

<table>
<thead>
<tr>
<th>(I_{H^+}) (mA)</th>
<th>(r_{12})</th>
<th>(X_{\text{max}}) (mm)</th>
<th>(V_{x\text{max}}) (10^6 m/s)</th>
<th>(I_{\text{eff}}) (mA)</th>
<th>(\varepsilon_N) ((\pi) mm mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>0.8027</td>
<td>2.394</td>
<td>13.13</td>
<td>0.5</td>
<td>0.1032</td>
</tr>
<tr>
<td>72</td>
<td>-0.2288</td>
<td>5.124</td>
<td>6.137</td>
<td>2.0</td>
<td>0.1714</td>
</tr>
<tr>
<td>100</td>
<td>-0.2701</td>
<td>5.171</td>
<td>7.049</td>
<td>5.5</td>
<td>0.1955</td>
</tr>
</tbody>
</table>

* \(v_o = \sqrt{2e\phi/c^2}, r_{12} = \alpha[1+\alpha^2]^{-1/2}, x_{\text{max}} = (\beta\varepsilon(6\text{rms}))^{-1/2}, V_{x\text{max}} = (\varepsilon(6\text{rms}))^{-1/2}v_o \)
mA beam, 1.4% vs. 13.7% for the 72-mA beam, and 3.7% vs. 21.7% for the 100-mA beam.

4 LEDA RFQ PARMTEQM SIMULATIONS

The SCHAR output files are used to generate 5,000 particle input beams for the PARMTEQM computer code to calculate the RFQ transmission and output ε_n. The proton fraction can be as high as 95% [16], but typical values are ~90%. We use the measured DC2 current (Fig. 1), multiplied by 0.9, for the PARMTEQM input current. The result for the 100 mA beam (111 mA at DC2) is transmission = 92.2% and output $\varepsilon_n = 0.232 \pi$ mm mrad (Fig. 5, Table 2) at the design RFQ interplate voltage. The predicted LEDA RFQ transmissions for the other input beam currents are given in Table 2.

5 DISCUSSION

There is good overall agreement between the simulation for 100 mA reported here and that for 110 mA reported in Ref. [8]. This is striking because the input parameters for the simulations in [8] were obtained for a prototype LEBT in which the two solenoid magnets were placed next to each other, with no separation (see Fig. 3 of Ref. 1). The large emittance growth in Solenoid #1 for the 45-mA beam arises from the large divergence of the 45-mA beam from the ion source extraction system. This extraction system is designed for 110-mA H^+ beams — at 50 mA there is a large perveance mismatch, with a crossover in the extraction gap. This accounts for the large divergence, and small beam size, for the 45-mA case (Table 1).

In the initial LEDA accelerator commissioning stage, we are injecting pulsed low-current (10-20 mA), low-duty-factor (~1%) beams into the RFQ to allow us to gain understanding of the system operation without damaging components. To produce these low-current pulsed beams, we have installed a 5.0-mm-diam aperture in place of the 8.6-mm-diam aperture used for the measurements and simulations reported in this paper. Also, a variable beam iris has been installed just in front of Solenoid #1. In our initial tests, 40 mA of hydrogen is extracted from the source, and the iris used to aperture out 50-75% of the beam current. We simulated the low-current beams from the 5-mm-diam emission-aperture based extraction system with PARMELA [10]. Using the PARMELA LEBT results as input to PARMTEQM, we find good agreement between the PARMTEQM RFQ simulations and the initial RFQ measurements [14]. After we have demonstrated good operation of the RFQ with the 5-mm-diam extraction system at its full current (~50 mA), we will install the 8.6-mm-diam extraction system to test the LEDA RFQ up to its full design current of 100 mA.

REFERENCES

Table 2. Results of the LEDA LEBT and RFQ simulations with SCHAR and PARMTEQM, respectively.

| ε | ε | SCHAR | PARM- | PARM-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{in}</td>
<td>e_{out}</td>
<td>RFQ</td>
<td>TEQM</td>
<td>RFQ</td>
<td></td>
</tr>
<tr>
<td>Sol#1</td>
<td>Sol#2</td>
<td>mm mrad</td>
<td>mm mrad</td>
<td>mm mrad</td>
<td>mm mrad</td>
</tr>
<tr>
<td>mA</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>31.1</td>
<td>17.5</td>
<td>0.160</td>
<td>0.164</td>
<td>0.173</td>
</tr>
<tr>
<td>72</td>
<td>0.5</td>
<td>11.6</td>
<td>0.195</td>
<td>0.195</td>
<td>0.206</td>
</tr>
<tr>
<td>100</td>
<td>5.2</td>
<td>11.6</td>
<td>0.238</td>
<td>0.239</td>
<td>0.232</td>
</tr>
</tbody>
</table>

Fig. 5. PARMTEQM-calculated RFQ input (top) and output (bottom) phase space for the 100-mA beam.