PERFORMANCE TEST PLAN
FOR
A SPACE STATION TOLUENE HEATER TUBE

CONTRACT NO. 9-X6H-8102L-1

PREPARED FOR
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS, NEW MEXICO

BY
SUNSTRAND ENERGY SYSTEMS
4747 HARRISON AVENUE
ROCKFORD, ILLINOIS

OCTOBER 1, 1987

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
APPROVAL SHEET

PERFORMANCE TEST PLAN
FOR
A SPACE STATION TOLUENE HEATER TUBE
(CONTRACT NO: 9-X6H-8102L-1)

PREPARED BY
(M.B. PAREKH)
DATE 10/05/87

APPROVED BY
(G. HEIDENREICH)
DATE 10/14/87

APPROVED BY
(G. HILL)
DATE 10/15/87
PERFORMANCE TEST PLAN FOR
A SPACE STATION TOLUENE HEATER TUBE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>Technical Objectives</td>
<td>3</td>
</tr>
<tr>
<td>3.0</td>
<td>Design Requirements</td>
<td>4</td>
</tr>
<tr>
<td>4.0</td>
<td>Test Loop and Hardware Description</td>
<td>5</td>
</tr>
<tr>
<td>4.1</td>
<td>Test Loop Description</td>
<td>5</td>
</tr>
<tr>
<td>4.2</td>
<td>Toluene Heater Tube</td>
<td>6</td>
</tr>
<tr>
<td>5.0</td>
<td>Performance Predictions</td>
<td>8</td>
</tr>
<tr>
<td>6.0</td>
<td>Planned tests</td>
<td>9</td>
</tr>
<tr>
<td>7.0</td>
<td>Procedures</td>
<td>10</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>8.0</td>
<td>Data Acquisition System</td>
<td>12</td>
</tr>
<tr>
<td>9.0</td>
<td>Report</td>
<td>13</td>
</tr>
</tbody>
</table>
1.0 Introduction

This test plan describes the Sundstrand portion of Task 4 of Los Alamos National Laboratory (LANL) contract 9-X6H-8102L-1.

Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station.

This heat pipe is a subassembly of the heat receiver shown in Figure 1. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver's outside diameter. As shown in Figure 1, each heat pipe contains a toluene heater tube, two thermal energy storage (TES) canisters and potassium.
The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.
2.0 Technical Objectives

The following represent the technical objectives for Task 4:

- To determine the hydraulic and thermal performance characteristics of the toluene heater tube (THT) with heat input simulating that from a heat pipe.

- To verify the design techniques used to predict the thermal performance characteristics of the heater tube. The following two space station conditions are planned to be simulated:

 a. Maximum input power
 b. Minimum input power
Design Requirements

The following form the basis for the design of the test loop and test hardware:

- Simulate thermal and hydraulic aspects of the space station heater tube (Described in section 5.0)
- Maximum input power to the working fluid 3.85 KW_t
- Toluene working fluid (Conditions defined in Table III)
- Constant flow rate for all conditions (54.35 lbm/hr for maximum power and 39.25 lbm/hr for minimum power)
- Supercritical cycle
- Fluidized bed as a heat source to simulate isothermal heat input to heater tube
- Detailed cleaning and purging procedures similar to that used under the NAS3-24663 Toluene Stability Program
4.0 **Test Loop and Hardware Description**

Descriptions are given for the test loop and test hardware in this section.

4.1 **Test Loop Description**

The toluene heater tube (THT) thermal and hydraulic performance tests will be conducted in Sundstrand test cell 62 using the toluene stability loop which is specifically modified for these tests. The toluene stability test loop was originally designed and built under the separate government funded program (NAS3-24663) for the measurement of toluene degradation rate while simulating the ORC turbine inlet/outlet conditions. Figure 2 shows the modified toluene test facility schematic for testing the toluene heater tube. Test loop cleaning and toluene handling procedures are briefly described in Paragraph 7.0. The toluene inlet mass flow will be adjusted to the desired value by the control valve shown on Figure 2. The toluene inlet temperature will be controlled by adjusting the heat rejected in the water cooled condenser. This is done with valve VI shown on Figure 2. The temperature of fluidized bed, which is a heat source for this test, will be maintained at the desired value by controlling the power input to the electrical heaters. Figure 3 shows the test article submerged in the fluidized bed. General engineering features of the fluidized bed are shown in Figure 4.
Instrumentation (as listed in Table I) will be provided to measure the inlet mass flow, pressure and temperature for the toluene heater tube. The outlet temperature and the pressure drop across the toluene heater tube inlet and outlet ports will also be measured. Additional thermocouples will be located on the thermal stand-off sections of the heater tube. The fluidized bed temperature and the heater tube external skin temperature will be monitored. Figures 2 and 5 show the pressure and temperature probe locations. An automatic computer data acquisition system will be used to monitor and record the test data. The red line parameters will also be identified to shut down the test system in case of the system operating beyond a safe limit. The shutdown may be automatic and/or manual. Table I describes the instrumentation that will be used to monitor the thermal performance of the toluene heater tube.

4.2 Toluene Heater Tube

The organic Rankine cycle solar dynamic power system (ORC-SDPS) converts concentrated solar energy into the thermal energy required to generate electric power. Heat pipes, with integral thermal energy storage canisters and
heater tubes, form the cavity inside wall of the solar receiver. They absorb solar energy and transform it into a uniform source temperature for the ORC working fluid (toluene). The bayonet style toluene heater tube (THT), integral to the heat pipe, provides an interface between the heat pipe potassium vapor and the toluene working fluid. A constant heat flux THT design ensures a gradual toluene temperature increase throughout the heater tube length, thereby minimizing toluene degradation for a given outlet temperature.

Constant heat flux to the toluene working fluid from a uniform source temperature can be accomplished by incorporating thermal standoffs in the THT design. One such design provides disk fins with axially varying cross-section as the thermal standoffs between the heat pipe/heater tube interface (outer tube) and the inner toluene working fluid tube (inner tube). Thermal standoffs with radially low conductance at the toluene annulus inlet linearly increasing to radially high conductance at the toluene annulus exit provide an axially uniform heat flux to the toluene.

The disk fin constant heat flux heater tube developed and fabricated under Los Alamos contract no. 9-X6H-8102L-1, shown in Figure 6. The heater tube is fabricated from 300 series stainless steel, which is compatible with toluene.
5.0 **Performance Predictions**

The heater tube was designed for supercritical toluene flow. Therefore, any boiling phenomena is avoided. A thermal math model was developed to analyze the design and determine how closely it meets the SD-ORC performance requirements. The minimum power input occurs during the nominal insolation orbit (solar constant 1.323 kW/m²) at the end of the eclipse period. Maximum power input occurs during the maximum insolation orbit (solar constant 1.419 kW/m²) at the end of the insolation period. The design parameters and accompanying pressure-enthalpy (P-H) diagram are summarized in Table II. The thermal model results based on the two design points are shown in Figures 7 and 8. The minimum design point is identified as a "min-insolation" and the maximum design point is identified as "max-insolation." The model predicts that the design will adequately meet the SD-ORC performance requirements. The predicted outlet temperatures are shown in Table II. The maximum pressure drop across the THT is calculated to be 8.8 psi.
6.0 Planned Tests

Steady-State Thermal Performance Test

The series of tests are planned to determine the steady-state performance characteristics of the toluene heater tube. A minimum of two steady-state thermal and hydraulic performance tests are planned which will permit the various combinations of the inlet toluene mass flow, pressure and temperature conditions to be investigated. The test conditions are based upon the toluene heater tube design parameters derived from the ORC solar dynamic power system performance requirements for the Space Station, and are shown on Table III.
Performance Test Plan for a Space Station Tool e Heater Tube

7.0 Procedures

The test loop cleaning and toluene handling procedures that will be conducted prior to testing are listed below:

Loop Construction

1. Cleaning Piece Parts and Subassemblies
 - CP14.57-01
 General precision cleaning
 KIPS (See Appendix G)
 - Summary of CP14.57-01
 - NVR < 10 ppm
 - Particle Size Particle Count
 (μm)
 - 5-15
 - 16-25
 - 26-50
 - 51-100
 - >100
 - 8000
 - 1425
 - 253
 - 45
 - 8
 - Basic procedure defined in CP14.57-01
 - Flush with freon
 - Blow dry with GN2
 - Vapor decrease in freon
 - Ultrasonic clean
 - Rinse
 - Sample flushing liquid, must comply with above
 - Blow dry with GN2
 - Vacuum bake
 - Bag and seal

2. Leak Checks
 - Helium mass spectrometer leak check on subassemblies and system
 - Evacuate interior to 1 x 10^-4 torr
 - Max. allowable leakage rate 1 x 10^-6 scc/sec

3. Toluene Preparation
Performance Test Plan for a
Space Station Toluene Heater Tube

o Deaerate charge of toluene
 o Freeze under vacuum using liquid nitrogen
 o Repeat twice
o Load deaerated toluene into clean, evacuated system

4. Flushing
o Charge evacuated circuit with deaerated toluene
o Heat fluidized bed
o Circulate toluene
o Analyze sample for:
 1. Particulates per NAS1638, Class 5
 2. Nonvolatile residue shall not exceed 10 ppm per 100 ml of fluid
 3. Volatile contaminants shall not exceed amounts in original toluene sample
o Continue flushing until acceptable
8.0 **Data Acquisition System**

An existing Analog Devices MACSYM automatic data acquisition system will be used to monitor and record the temperature, pressure and mass flow data. The critical parameters will also be recorded on the 8-channel brush recorder. Table I describes the type of recording device used for monitoring such parameters. The daily record of testing, including any anomalies, will be logged in the THT test log book. The inlet/outlet test parameters will be recorded in the test data sheet shown in Table IV. Test anomalies, if any identified, will be evaluated for their impact on future testing. The appropriate corrective actions will be taken to minimize the impact due to anomalies on further testing.
A test report describing the test objectives, test results and correlation with the analytical data, and conclusions will be prepared and submitted as part of meeting the contractual requirements.
Performance Test for a Space Station Toluene Heater Tube

TABLE I

TOLUENE HEATER TUBE INSTRUMENTATION

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameters</th>
<th>Unit</th>
<th>Range</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inlet Mass Flow</td>
<td>Lb/hr</td>
<td>0-72</td>
<td>X, Y</td>
</tr>
<tr>
<td>2</td>
<td>Inlet Temp (A)</td>
<td>°F</td>
<td>RT-600</td>
<td>X, Y</td>
</tr>
<tr>
<td>3</td>
<td>Inlet Temp (B)</td>
<td>°F</td>
<td>RT-600</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>Inlet Pressure</td>
<td>Psig</td>
<td>0-1000</td>
<td>X, Y</td>
</tr>
<tr>
<td>5</td>
<td>Outlet Temp (A)</td>
<td>°F</td>
<td>400-1000</td>
<td>X, Y</td>
</tr>
<tr>
<td>6</td>
<td>Outlet Temp (B)</td>
<td>°F</td>
<td>400-1000</td>
<td>Y</td>
</tr>
<tr>
<td>7</td>
<td>P (Pressure Drop)</td>
<td>Psi</td>
<td>0-200</td>
<td>X, Y</td>
</tr>
<tr>
<td>8</td>
<td>Fluidized Bed Temp (A)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>Fluidized Bed Temp (B)</td>
<td>°F</td>
<td>RT-1200</td>
<td>X, Y</td>
</tr>
<tr>
<td>10</td>
<td>Fluidized Bed Temp (C)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>11</td>
<td>Thermal Standoff Temp (1)</td>
<td>°F</td>
<td>RT-1200</td>
<td>X, Y</td>
</tr>
<tr>
<td>12</td>
<td>Thermal Standoff Temp (2)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>Thermal Standoff Temp (3)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>14</td>
<td>Thermal Standoff Temp (4)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>15</td>
<td>Thermal Standoff Temp (5)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td>Thermal Standoff Temp (6)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>17</td>
<td>Thermal Standoff Temp (7)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>18</td>
<td>Heater Tube Outer Skin Temp (1)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>19</td>
<td>Heater Tube Outer Skin Temp (2)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
<tr>
<td>20</td>
<td>Heater Tube Outer Skin Temp (3)</td>
<td>°F</td>
<td>RT-1200</td>
<td>Y</td>
</tr>
</tbody>
</table>

* NOTE: X - Brush Recorder
 Y - Digital Display
TABLE II

SD-ORC HEATER TUBE DESIGN POINTS

<table>
<thead>
<tr>
<th>Minimum Power Input (O→O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pipe Vapor Temperature</td>
</tr>
<tr>
<td>Toluene Inlet Temperature</td>
</tr>
<tr>
<td>Toluene Mass Flow Rate Per Heater Tube</td>
</tr>
<tr>
<td>Toluene Inlet Pressure</td>
</tr>
<tr>
<td>Required Toluene Outlet Temperature</td>
</tr>
<tr>
<td>Model Predicted Toluene Outlet Temperature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum Power Input (O→O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pipe Vapor Temperature</td>
</tr>
<tr>
<td>Toluene Inlet Temperature</td>
</tr>
<tr>
<td>Toluene Mass Flow Rate Per Heater Tube</td>
</tr>
<tr>
<td>Toluene Inlet Pressure</td>
</tr>
<tr>
<td>Required Toluene Outlet Temperature</td>
</tr>
<tr>
<td>Model Predicted Toluene Outlet Temperature</td>
</tr>
</tbody>
</table>

P-H Diagram, Toluene
TABLE III

TOLUENE HEATER TUBE TEST CONDITIONS

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Bed Temp (°F)</th>
<th>Toluene Flow lb/hr</th>
<th>Inlet Temp (°F)</th>
<th>Inlet Pressure (psia)</th>
<th>Solar Dynamic Power System Operating Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>893</td>
<td>54.35</td>
<td>375</td>
<td>731</td>
<td>Maximum Input Power</td>
</tr>
<tr>
<td>2</td>
<td>852</td>
<td>39.25</td>
<td>424</td>
<td>614</td>
<td>Nominal Input Power</td>
</tr>
<tr>
<td>Test Run</td>
<td>Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV

TOLUENE HEATER TUBE TEST DATA

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>INLET TEMP.</th>
<th>INLET PRESS.</th>
<th>INLET MASS FLOW</th>
<th>OUTLET TEMP.</th>
<th>PRESSURE DROP</th>
<th>FLUIDIZED TEMP</th>
<th>THERMAL BATH TEMP</th>
<th>STAND-OFF TEMP</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°F</td>
<td>Psi</td>
<td>1h/Hr</td>
<td>°F</td>
<td>Psi</td>
<td>°F</td>
<td>°F</td>
<td>°F</td>
<td></td>
</tr>
</tbody>
</table>

Engineer: ____________________
Date: ____________________
FIGURE 1

ORC Heat Pipe Receiver

HEAT PIPE
- Integrated Axial Flux Variations
- Provides Isothermal Source for TES
- Simple Fabrication

TES CANISTER
- Radial Fins Minimize ΔT
- Heat Added and Removed From Same Surface
- Well Characterized PCM

HEATER TUBE
- Constant Flux Minimizes Fluid Degradation
- Free Expansion Configuration
FIGURE 2
TOLUENE HEATER TUBE TEST FACILITY

SAFETIES
- FLUID OVERTEMP.
- FLUIDIZED BED OVERTEMP
- LOW/NO WATER FLOW
- TOLUENE LEAK
- OIL OVERTEMP.
- LOW/NO TOLUENE FLOW
- FIRE DETECTION & SUPPRESSION

CONTROLS
- FLUIDIZED BED TEMP
- FEED PUMP FLOW
- CONDENSER TEMP.
- INTERMEDIATE OIL LOOP TEMP.
FIGURE 3

A SCHEMATIC OF TOLUENE HEATER TUBE
SUBMERGED IN FLUIDIZED BED

(HEATERS ARE NOT SHOWN)
1. 40 Kw capacity
2. 6 Watlow radiant heaters, 7-1/2 kw, 480V, 3φ
3. Max. temp 1450°F
4. Air blower 1500 CFH
5. Al₂O₃ extra fine mesh 120
6. Ceramic insulation
7. Overall dimensions 110" x 32" x 50" (retort) 92" x 12" x 24"
8. +/-10°F
FIGURE 7
HEATER TUBE PERFORMANCE PREDICTION (NOMINAL INSOLATION)
FIGURE 8

HEATER TUBE PERFORMANCE PREDICTION
(MAXIMUM INSOLATION)