Assessment of One- and Two-Equation Turbulence Models for Hypersonic Transitional Flows

PDF Version Also Available for Download.

Description

Many Navier-Stokes codes require that the governing equations be written in conservation form with a source term. The Spalart-Allmaras one-equation model was originally developed in substantial derivative form and when rewritten in conservation form, a density gradient term appears in the source term. This density gradient term causes numerical problems and has a small influence on the numerical predictions. Further work has been performed to understand and to justify the neglect of this term. The transition trip term has been included in the one-equation eddy viscosity model of Spalart-Allmaras. Several problems with this model have been discovered when applied to ... continued below

Physical Description

17 p.

Creation Information

ROY,CHRISTOPHER J. & BLOTTNER,FREDERICK G. January 14, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Many Navier-Stokes codes require that the governing equations be written in conservation form with a source term. The Spalart-Allmaras one-equation model was originally developed in substantial derivative form and when rewritten in conservation form, a density gradient term appears in the source term. This density gradient term causes numerical problems and has a small influence on the numerical predictions. Further work has been performed to understand and to justify the neglect of this term. The transition trip term has been included in the one-equation eddy viscosity model of Spalart-Allmaras. Several problems with this model have been discovered when applied to high-speed flows. For the Mach 8 flat plate boundary layer flow with the standard transition method, the Baldwin-Barth and both k-{omega} models gave transition at the specified location. The Spalart-Allmaras and low Reynolds number k-{var_epsilon} models required an increase in the freestream turbulence levels in order to give transition at the desired location. All models predicted the correct skin friction levels in both the laminar and turbulent flow regions. For Mach 8 flat plate case, the transition location could not be controlled with the trip terms as given in the Spalart-Allmaras model. Several other approaches have been investigated to allow the specification of the transition location. The approach that appears most appropriate is to vary the coefficient that multiplies the turbulent production term in the governing partial differential equation for the eddy viscosity (Method 2). When this coefficient is zero, the flow remains laminar. The coefficient is increased to its normal value over a specified distance to crudely model the transition region and obtain fully turbulent flow. While this approach provides a reasonable interim solution, a separate effort should be initiated to address the proper transition procedure associated with the turbulent production term. Also, the transition process might be better modeled with the Spalart-Allmaras turbulence model with modification of the damping function f{sub v1}. The damping function could be set to zero in the laminar flow region and then turned on through the transition flow region.

Physical Description

17 p.

Notes

OSTI as DE00750242

Medium: P; Size: 17 pages

Source

  • 38th AIAA Aerosciences Meeting, Reno, NM (US), 01/10/2000--01/13/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND2000-0138C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 750242
  • Archival Resource Key: ark:/67531/metadc709335

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 14, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • April 7, 2017, 3:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

ROY,CHRISTOPHER J. & BLOTTNER,FREDERICK G. Assessment of One- and Two-Equation Turbulence Models for Hypersonic Transitional Flows, article, January 14, 2000; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc709335/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.