Computer-optimized design of polyethylene-moderated {sup 3}He counters for fast neutrons

PDF Version Also Available for Download.

Description

Because polyethylene-moderated {sup 3}He counters are rugged and reliable, they are generally the instruments of choice for field detection of fast neutrons in gamma-ray backgrounds. Their main drawback is the bulky, massive moderator needed to reduce the incident neutron energies to the sensitive range of the {sup 3}He+n capture reaction. This report discusses an optimization approach that provides a detector with uniform angular response and the maximum detection efficiency per unit mass. The key assumption is that each parameter has a geometrical interpretation and its effect on the response can be evaluated independently from that of the others. Specifically, the ... continued below

Physical Description

Medium: P; Size: 93 pages

Creation Information

Byrd, R. C. May 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Because polyethylene-moderated {sup 3}He counters are rugged and reliable, they are generally the instruments of choice for field detection of fast neutrons in gamma-ray backgrounds. Their main drawback is the bulky, massive moderator needed to reduce the incident neutron energies to the sensitive range of the {sup 3}He+n capture reaction. This report discusses an optimization approach that provides a detector with uniform angular response and the maximum detection efficiency per unit mass. The key assumption is that each parameter has a geometrical interpretation and its effect on the response can be evaluated independently from that of the others. Specifically, the detection efficiency can be written as a product of separate functions for the moderator mass, gas pressure, tube position, etc., and the uniformity of the angular response is determined by the symmetry of the moderator dimensions. This analytical model was tested by compiling a comprehensive database of detector efficiencies as functions of the different parameters, including one- versus two-tube detectors, moderator masses from 1 to 6 kg, gas pressures from 1 to 20 atm, etc. In general, the model reproduced both the magnitude and angular dependence of the efficiency to within about 10%. To a high degree, the most important parameters are polyethylene mass and the quantity of {sup 3}He gas; because of neutron diffusion out of the moderator, the optimum tube positions are near the center of the detector. The highest value of the efficiency per unit mass occurs near 3 kg, a result that requires the most compact detectors to use more than a single {sup 3}He tube. In this case, the optimum detector has two tubes and a total mass of 3.0 kg. Although they could use 4-atm tubes with 2.54-cm diameters, increasing the gas volume could easily provide a 20% increase in efficiency with no changes in other parameters.

Physical Description

Medium: P; Size: 93 pages

Notes

INIS; OSTI as DE00756871

Source

  • Other Information: PBD: 1 May 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LA-13695-MS
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/756871 | External Link
  • Office of Scientific & Technical Information Report Number: 756871
  • Archival Resource Key: ark:/67531/metadc709314

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 1, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • March 11, 2016, 5:15 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Byrd, R. C. Computer-optimized design of polyethylene-moderated {sup 3}He counters for fast neutrons, report, May 1, 2000; New Mexico. (digital.library.unt.edu/ark:/67531/metadc709314/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.