Summary of micrographic analysis of selected core samples from Well ER-20-6{number_sign}1 in support of matrix diffusion testing

PDF Version Also Available for Download.

Description

ER-20-6{number_sign}1 was cored to determine fracture and lithologic properties proximal to the BULLION test cavity. Selected samples from ER-20-6{number_sign}1 were subjected to matrix and/or fracture diffusion experiments to assess solute movement in this environment. Micrographic analysis of these samples suggests that the similarity in bulk chemical composition results in very similar mineral assemblages forming along natural fractures. These samples are all part of the mafic-poor Calico Hills Formation and exhibit fracture-coating mineral assemblages dominated by mixed illite/smectite clay and illite, with local opaline silica (2,236 and 2, 812 feet), and zeolite (at 2,236 feet). Based on this small sample population, ... continued below

Physical Description

3,900 Kilobytes pages

Creation Information

IT Corporation, Las Vegas September 25, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 62 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

ER-20-6{number_sign}1 was cored to determine fracture and lithologic properties proximal to the BULLION test cavity. Selected samples from ER-20-6{number_sign}1 were subjected to matrix and/or fracture diffusion experiments to assess solute movement in this environment. Micrographic analysis of these samples suggests that the similarity in bulk chemical composition results in very similar mineral assemblages forming along natural fractures. These samples are all part of the mafic-poor Calico Hills Formation and exhibit fracture-coating mineral assemblages dominated by mixed illite/smectite clay and illite, with local opaline silica (2,236 and 2, 812 feet), and zeolite (at 2,236 feet). Based on this small sample population, the magnitude to which secondary phases have formed on fracture surfaces bears an apparently inverse relationship to the competency of the host lithology, reflected by variations in the degree of fracturing and the development of secondary phases on fracture surfaces. In the flow breccia at 2,851 feet, thinly developed, localized coatings are developed along persistent open fracture apertures in this competent rock type. Fractures in the devitrified lava from 2,812 feet are irregular, and locally blocked by secondary mineral phases. Natural fractures on the zeolitized tuff from 2,236 feet are discontinuous and irregular and typically obstructed with secondary mineral phases. There are also a second set of clean fractures in the 2,236 foot sample which lack secondary mineral phases and are interpreted to have been induced by the BULLION test. Based on these results, it is expected that matrix diffusion will be enhanced in samples where potentially transmissive fractures exhibit the greatest degree of obstruction (2,236>2,812=2,835>2,851). It is unclear what influence the induced fractures observed at 2,236 feet may have on diffusion given the lack of knowledge on their extent. It is assumed that the bulk matrix diffusion characteristics of the sample at 2,835 feet will be equivalent to the unfractured characteristics of the sample at 2,812 feet.

Physical Description

3,900 Kilobytes pages

Notes

INIS; OSTI as DE00756362

Source

  • Other Information: PBD: 25 Sep 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/NV/13052-048
  • Report No.: ITLV/13052-048
  • Grant Number: AC08-97NV13052
  • DOI: 10.2172/756362 | External Link
  • Office of Scientific & Technical Information Report Number: 756362
  • Archival Resource Key: ark:/67531/metadc709268

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 25, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Sept. 22, 2017, 2:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 62

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

IT Corporation, Las Vegas. Summary of micrographic analysis of selected core samples from Well ER-20-6{number_sign}1 in support of matrix diffusion testing, report, September 25, 1998; United States. (digital.library.unt.edu/ark:/67531/metadc709268/: accessed July 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.