Predictive mathematical modeling of trickling bed biofilters for elucidating mass transfer and kinetic effects

PDF Version Also Available for Download.

Description

Mathematical models of varying complexity have been proposed in the open literature for describing uptake of volatile organics in trickling bed biofilters. Many simpler descriptions yield relatively accurate solutions, but are limited as predictive tools by numerous assumptions which decrease the utility of the model. Trickle bed operation on the boundary between mass transfer and kinetic limitation regimes serves as one example in which these models may be insufficient. One-dimensional models may also fail to consider important effects/relationships in multiple directions, limiting their usefulness. This paper discusses the use of a predictive, two-dimensional mathematical model to describe microbial uptake, diffusion ... continued below

Physical Description

23 p.

Creation Information

Barton, J.W.; Zhang, X.S.; Klasson, K.T. & Davison, B.H. March 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Mathematical models of varying complexity have been proposed in the open literature for describing uptake of volatile organics in trickling bed biofilters. Many simpler descriptions yield relatively accurate solutions, but are limited as predictive tools by numerous assumptions which decrease the utility of the model. Trickle bed operation on the boundary between mass transfer and kinetic limitation regimes serves as one example in which these models may be insufficient. One-dimensional models may also fail to consider important effects/relationships in multiple directions, limiting their usefulness. This paper discusses the use of a predictive, two-dimensional mathematical model to describe microbial uptake, diffusion through a biofilm, and mass transfer of VOCs from gas to liquid. The model is validated by experimental data collected from operating trickle-bed bioreactors designed for removing sparingly soluble gaseous contaminants. Axial and radial (biofilm) concentration profiles are presented, along with validation results. Operation in regimes in which both mass transfer and kinetic factors play significant roles are discussed, along with predictive modeling implications.

Physical Description

23 p.

Notes

OSTI as DE98004893

Source

  • 91. annual meeting and exhibition of the Air and Waste Management Association, San Diego, CA (United States), 14-18 Jun 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98004893
  • Report No.: ORNL/CP--97102
  • Report No.: CONF-980632--
  • Office of Scientific & Technical Information Report Number: 671903
  • Archival Resource Key: ark:/67531/metadc709121

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • June 13, 2016, 8:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Barton, J.W.; Zhang, X.S.; Klasson, K.T. & Davison, B.H. Predictive mathematical modeling of trickling bed biofilters for elucidating mass transfer and kinetic effects, article, March 1, 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc709121/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.