Reduction of background by higher order statistics with NMIS

PDF Version Also Available for Download.

Description

Measurements that accumulate the rate of real coincidence between multiplets of detection events (groupings of arbitrary order, e.g., one event, two events, three events, etc.) can yield spurious results if background events arise from processes (e.g., spontaneous fission or neutron spallation) that themselves produce correlated multiplets. This is particularly true if this background varies significantly over time or from one location to another, as it often does in operating facilities, i.e., those not specifically designed to support experimental radiation measurements but that instead rely upon the support of precise radiation measurements for, e.g., NMC and A. In particular, both the ... continued below

Physical Description

11 pages

Creation Information

Mattingly, J. K.; Mullens, J. A. & Mihalczo, J. T. July 11, 2000.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Oak Ridge Y-12 Plant
    Publisher Info: Oak Ridge Y-12 Plant, TN (United States)
    Place of Publication: Tennessee

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Measurements that accumulate the rate of real coincidence between multiplets of detection events (groupings of arbitrary order, e.g., one event, two events, three events, etc.) can yield spurious results if background events arise from processes (e.g., spontaneous fission or neutron spallation) that themselves produce correlated multiplets. This is particularly true if this background varies significantly over time or from one location to another, as it often does in operating facilities, i.e., those not specifically designed to support experimental radiation measurements but that instead rely upon the support of precise radiation measurements for, e.g., NMC and A. In particular, both the quantity and location of radioactive material in weapons facilities changes frequently and unpredictably, and so the background due to the presence (or absence) of this material is completely out of the control of the radiation measurement analyst. Furthermore, numerous Nuclear Materials Identification System (NMIS) measurements have revealed that background often contains mutually correlated events even in the complete absence of material (e.g., {sup 240}Pu) with a significant spontaneous fission rate. The technique subsequently described removes the effects of such self-correlated background from active NMIS measurements. It could be adapted to other active radiation measurements.

Physical Description

11 pages

Source

  • Institute of Nuclear Materials Management, New Orleans, LA (US), 07/16/2000--07/20/2000

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: Y/LB-16,064
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 759746
  • Archival Resource Key: ark:/67531/metadc709113

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 11, 2000

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • May 6, 2016, 4:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mattingly, J. K.; Mullens, J. A. & Mihalczo, J. T. Reduction of background by higher order statistics with NMIS, article, July 11, 2000; Tennessee. (digital.library.unt.edu/ark:/67531/metadc709113/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.