Genetic analysis of embryo dormancy. Final report

PDF Version Also Available for Download.

Description

Primary dormancy is the inability of mature seed to immediately germinate until specific environmental stimuli are perceived that predict that future conditions will support plant growth and seed set. The analysis of abscisic acid deficient and insensitive mutants, in particular in Arabidopsis, suggests that embryo abscisic acid may be directly involved in the development of primary dormancy. Other studies implicate the continued accumulation of LEA proteins as inhibiting germination in dormant embryos. The results of these physiological, molecular and genetic approaches are complex and equivocal. There is a real need for approaches that test the separate nature of vivipary inhibition ... continued below

Physical Description

7 p.

Creation Information

Galau, G. September 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 30 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Primary dormancy is the inability of mature seed to immediately germinate until specific environmental stimuli are perceived that predict that future conditions will support plant growth and seed set. The analysis of abscisic acid deficient and insensitive mutants, in particular in Arabidopsis, suggests that embryo abscisic acid may be directly involved in the development of primary dormancy. Other studies implicate the continued accumulation of LEA proteins as inhibiting germination in dormant embryos. The results of these physiological, molecular and genetic approaches are complex and equivocal. There is a real need for approaches that test the separate nature of vivipary inhibition and primary dormancy and deliberately seed to decouple and dissect them. These approaches should be of help in understanding both late embryo development and primary dormancy. The approach taken here is to directly isolate mutants of Arabidopsis that appear to be deficient only in primary dormancy, that is fresh seed that germinate rapidly without the normally-required cold-stratification. The authors have isolated at least 8 independent, rapidly germinating RGM mutants of Arabidopsis. All others aspects of plant growth and development appear normal in these lines, suggesting that the rgm mutants are defective only in the establishment or maintenance of primary dormancy. At least one of these may be tagged with T-DNA. In addition, about 50 RGM isolates have been recovered from EMS-treated seed.

Physical Description

7 p.

Notes

OSTI as DE98006404

Medium: P; Size: 7 p.

Source

  • Other Information: PBD: [1998]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98006404
  • Report No.: DOE/ER/20190--T1
  • Grant Number: FG02-95ER20190
  • DOI: 10.2172/656481 | External Link
  • Office of Scientific & Technical Information Report Number: 656481
  • Archival Resource Key: ark:/67531/metadc709055

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1998

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • Jan. 18, 2018, 7:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 30

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Galau, G. Genetic analysis of embryo dormancy. Final report, report, September 1, 1998; Athens, Georgia. (digital.library.unt.edu/ark:/67531/metadc709055/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.