SIND2000-02-85 C

EEEEﬁZOOO Eategory: Evolvable l-llardware (EH) —

Synthesis of Logic Circuits with Evolutionary Algorithms

Jake S. Jones

Evolutionary Computing Methods
Sandia Natjonal Labs, MS-0318
Albuquerque, NM 87185
jsjones@sandia.gov

Abstract

In the last decade there has been interest and
research in the area of designing circuits with
genetic algorithms, evolutionary algorithms, and
genetic programming. However, the ability to
design circuits of the size and complexity
required by modern engineering design
problems, simply by specifying required outputs
for given inputs, has as yet eluded researchers.
This paper describes current research in the area
of designing logic circuits using an evolutionary
algorithm. The goal of the research is to improve
the effectiveness of this method and make it a
practical aid for design engineers. A novel
method of implementing the algorithm is
introduced, and results are presented for various
multiprocessing systems. In addition to evolving
standard arithmetic circuits, work in the area of
evolving circuits that perform digital signal
processing tasks is described. .

1 INTRODUCTION

The steady increase of the power of computers has made
automatic design of engineering products a reality. The
ultimate goal of having a computer perform the same
tasks that previously required a highly skilled engineer or
computer programmer has been reached in numerous
areas. As computer capacity continues climbing, more
and more types of engineering problems will be solved
automatically by a single engineer directing a computer
tool, rather than by a team of engineers using traditional
methods.

Engineering design is manpower intensive, and hence
expensive. In the case of novel hardware design,
automation helps by giving designers new tools that allow
higher levels of expressive power in the description of

- f\:‘&\ \‘“m

-

]

Q7. $

George S. Davidson (,,Q -3
Evolutionary Computing Methods W:%
Sandia National Labs, MS-0318 S
Albuquerque, NM 87185
gsdavid@sandia.gov
their designs. For example. transistor/diode logic

diagrams are less expressive than gate level drawings,
which are less expressive than VLSI component level
drawings, which are less expressive than VHDL design
descriptions. Another boon of automation is the rule
checker that catches design errors before they are built
and before an error can propagate to damage other
circuitry. Automation aiso allows synthesized circuits
from VHDL. so that an abstract programming language
description suffices for the design rather than schematic
drawings. In all of these cases. designers must still emit
designs that express their intent and many details of the
designs must be specified to achieve good results.

Many applications are never developed due to the
associated expense or lack of access to a designer. Ideally.
many products could be built without the highest quality
logic designers if the computer could synthesize simply
described requirements, for example by means of
frequency response functions for signal processing
applications.

It is well known that analysis of the existing design is less
difficult than ab initio synthesis of new designs, so
building a design assistant. as described above. is
expected to be quite difficult. Such progress as has been
made has been limited to simple designs. and the
technology remains too weak to address the practical
design challenges faced by engineers. Design synthesis at
the level of real-world problems is the focus of the work
described here. The goal is to build tools to synthesize
important circuits for traditional logic circuit tasks and
digital signal processing applications.

In the following sections, prior efforts will be reviewed
and a promising new approach to total synthesis of larger
circuits will be described. Early results will be presented
and analyzed. The method for preducing these circuits
will be described and limiting issues will be discussed.
Finally, the potential for. this new approach will be

ERA AR s owon

&

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof. ‘

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

explored in light of the anticipated availability of vast
computing power and the need for syntlresis tools that
will allow modestly trained designers to produce novel,
high performance products.

1.1 EVOLUTIONARY ALGORITHMS

One set of tools that has been shown to be effective in
automatic design is the family of evolutionary algorithms.
Evolutionary algorithms and genetic algorithms are two
of many names that have been applied to the concept of a
search algorithm with a highly random component that is
patterned after Darwinian evolution. "Genetic algorithm"

refers to a search space composed of a binary bitstream.

"Evolutionary algorithm"” refers to a search space
composed of sets of integers. "Genetic Programming”
means that rather than evolving the design directly, a set
of instructions on how to assemble the design are evolved.
With the possible exception of Genetic Programming,
these terms (and numerous others not mentioned) refer to
algorithms that are arguably the same idea, differing only
in implementation.

These algorithms generally contain a population of
competing designs. As the process progresses, the more
fit designs will persist, and perhaps produce offspring that
possess similar properties. The less fit designs will be
replaced. The two most ubiquitous methods of generating
offspring are mutation and crossover. Mutation causes a
relatively small change in a design, while crossover
combines two separate designs. There are countless ways
of implementing these basic ideas, hence the numerous
names that they have been given. An introductory
description of some of these methods is found in
[Mitchell,96]. Genetic Programming, another
implementation of these basic ideas, is unique enough to
merit separate consideration. It is described in [Koza,99].

1.2 LOGIC CIRCUITS

A logic circuit consists of a network of gates whose inputs
and outputs are either a logic 0 or 1, and the output is a
logical function of the inputs. The shape of the gate (see
Figure 1) designates which logic function is implemented.
The logic circuit is the basic building block of the digital
computer. All digital computing, signal processing, or
control reduces to a network of logic gates. The logic
gates themselves are implemented using transistor logic
operated in a saturated state.

Traditional design of logic circuits is by a top-down
approach. An overall system design is broken down into
successively smaller building blocks, until at some point
the abstract blocks can be converted into a concrete logic
circuit. As a result, only smaller, more manageable logic
circuits must ultimately be designed. However, this
comes at a price. These pre-ordained divisions, or
standard design building blocks limit the optimization of

J

N

the design. Subdividing a design results in a circuit that is
only as good as the subdivision scheme.

1.3 RELATED WORK

Surveys of current work in this area can be found in
[Zebulum,97] and [Ya0,97]. In addition to the general
survey, [Zebulum,97] describes their own work in
evolving digital logic circuits. Their strategy is to evolve
in software using an evolutionary algorithm, but by
limiting the design space of the circuit with a preset series
of gate levels: a gate may only have inputs from the
previous level and may only be input to the next level.

2 ALGORITHM

A program was developed using C++ that uses an
evolutionary algorithm to design logic circuits based on
user specified input and output requirements. The input
and output requirements for the circuit, that is, the method
for calculating the fitness of a particular genome, must be
specified by the user in a text file. which is input to the
program.

DESCRIPTION OF GENOME

The genome of a logic circuit. i.e. the variables that must
be defined to completely describe the characteristics of a
single circuit, consists mainly of a variable length list of
gates; each specified by five integers. The five integers
specify the function of the gate. the type of each input (the
output of another gate or one of the global inputs), and the
index of each input. Another piece of information that is
stored in the genome is a list of integers that specify
which gates are connected to the global outputs. There are
no preset constraints on the topology other than a
maximum number of gates that can be used in a circuit.

2.1

2.2 TOURNAMENT SELECTION

The method of evolution consists of tournament selection
followed by crossover. mutation. or randomization. The
tournament consists of a number of jousts, where two
contestants are selected from the population based on a
weighted scale. The fitnesses of the two contestants are
compared, and the loser is replaced by one of three newly
generated circuits. The replacement is either a mutated
version of the winner, the result of a crossover between
the winner and another member of the population, or a
completely random circuit.

2.3 PATHSTRUCTURE

Each logic circuit has a skeletal path structure that aids
mutation and crossover.. There are at least as many
skeletal paths as there are outpwts in a circuit. Each path is
a route that begins at a global input, passes forward
through the first input of gates and ends at an output. If
there are more paths than outputs. then some of them will

LS INTAN

not end in outputs, but all outputs will be connected to a
path, see Figure 1. There will be many gates that are not
on a skeletal path, but are still integral to the function of
the circuit.

Figure 1: Evolved Circuit with 4 Outputs and 5 Paths

24 MUTATION

Circuit mutation consists of a number of individual gate
mutations. An individual mutation is one of 5 things:
adding a gate, changing a gate function, changing a gate’s
first input, changing a gate’s second input, or removing
(shorting) a gate. The number of individual mutations that
occur in a single mutation step is a random number from
one to some maximum number of mutations. The
maximum number of mutations is a variable that is
increased during lulls in the progress of the evolutionary
algorithm, to help escape fimess plateaus.

The gate addition mutation places a random type gate at
the end of one of the paths. The first input is connected to
the output of the end of the path, and the second input (if
it exists) is connected to another randomly selected gate
in the circuit. The new gate then becomes the end of the
path.

Shorting a gate removes a randomly selected gate,
splicing the output to the first input, and dropping the
second input connection. Changing a gate’s input refers to

randomly choosing another input gate (or global input) -

without regard to the skeletal path structure. Changing a
gate function simply picks randomly from the list of
possible types of gates.

2.5 CROSSOVER

With crossover, the genome of the winner is mixed with

another randomly selected genome (weighted scale), and”

(V2]

-

this new genome replaces the loser of the tournament.
The method of mixing the circuits guarantees that the
individual fitness performance of each output of the new
circuit is exactly like the fitness performance for the same
output of one of the two parents. Which parent each part
of the circuit comes from is a random variable. For
example, crossover can create a circuit whose
performance for outputs 1, 2, and 4 is identical to the first
parent, and whose performance for the remaining outputs
is the same as the second parent. In this manner, the
crossover algorithm creates circuits that are related to the
parents in both fithess performance and internal structure,
and avoids the unpredictable fitness performance that
results from splicing two circuits together based on a
random slice through each circuit.

2.6 MODULARITY

The object-oriented design of the system makes changing
the type of circuit evolved very easy. The possible types
of logic gates (AND, OR, XOR etc.) can be changed
according to the available gate functions on the hardware
for which the circuit is destined. Different types of logic
circuits can be evolved by setting the parameter that
selects the fitness evaluation function. Furthermore. the
system is not limited to logic circuits. Any circuit
structure could be designed by creating an appropriate
module, for instance, analog circuits or neural networks.

2.7 OTHER FEATURES

Of the many other features in the system, one of the most
useful is the ability to periodically write the best genomes
out to files, and then to use these genomes as seeds to
start new simulations. Other capabilities include
optimizing the size of the circuit and writing out history
data.

2.8 COMPUTE PLATFORMS

The single processor version runs with a menu system on
WindowsNT or from a command line on any Unix
platform. The parallel version has been run on a 232
processor Linux cluster and a 143 processor WinNT
cluster supercomputer. The parallelization (using MPI) of
the code is straightforward. Each node has its own
population and its own simulation, but at the end of each
timestep a random segment of each population emigrates
to the next processor node in the loop. In this fashion
evolutionary progress is communicated between the
nodes.

3 APPLICATIONS

3.1 ARITHMETIC CIRCUITS

One category of circuit that has been evolved with the
system is a simple feed-forward arithmetic logic circuit.

AR

[R AN S

In this case, the term feed-forward is used to describe a
circuit that has no feedback loops and no memory. When
a constant input is applied to the system, the output will
remain constant after a certain number of clock cycles.
This rule is enforced by the requirement that no gate can
be an input to a gate with a lower index number. The
input files specify the fitess function by listing the
expected output per input. Inappropriate inputs (or don’t-
cares) are not included in the input file. Cases where some
of the outputs are don’t-cares can also be handled.

Figure 2: Example of an Evolved Adder (1bit+1bit+carry)

Figure 2 shows a simple, evolved adder (1bit+1bit+carry
bit) that was created in less than a minute on a single
processor, using only one or two input AND, OR and INV
gates. Figure 3 shows the equivalent standard sum-of-
products realization of the same circuit, using the same
types of gates. The sum-of-products realization is not a
guaranteed minimal implementation, but it is a textbook
approach to creating logic circuits that implement
Boolean truth tables, so it is a meaningful comparison.

[} 3—-—-
T) f
T D
i PP T

j —

Figure 3: Textbook Design Sum-of-Products Adder
(1bit+1bit+carry)

Figure 4: Larger Example of an Evolved Adder
(6bit+6bit—-carry)

Figures 4 and 5 show an evolved adder (6bits+6bits+carry
bit) and multiplier (3bits*3bits). These two circuits were
evolved with the following set of possible gates: AND,
OR, XOR. and INV. Table 1 shows part of the input file
for the 6 bit adder problem. These two circuits are some
of the largest arithmetic circuits evolved with this system
to date. The adder took 1| hour to evolve, using 128
processors. The multiplier evolved in 45 minutes on a
single processor.

N
[RTTRN [ETINE E< TRE Gt 1T S,

. e T "uta ,.,:t..- o Ata
age ovgt [PLH g {114

water [I3{31] sartss teres sargsy

sarts sarz3e [T Targye settye

o~ 2o
= e f2a '.,) /53—.
(11T see2 e STH o

HH sares caresy etz tete2s sateyr tory

[N [ovali’
P S-a I faaet |
.. PeIuey J .
HIE = u::/ .‘_.-u‘ b ’
1] sarey satrtey [114%
T P
atz, 8 Y \ua
TirT s i e BEL2 gou;

(Y113
HU sares

targad san1

wULTIPLIER t23255 1 J33te) Evelwas 33 35 wvinutes on) pracassar (20n9v2Y?

Figure 5: Example of an Evolved Muitiplier (3bit*3bit)

(A}

t1t? input order:

#9999 c a0 b0 a1 b1 a2 b2 a3 b3 a4 b4 a5 bS
1194 output order: a0 a1 a2 a3 a4 a5 ¢
seee

t1t max_pum_nutations max_num_gates population time_linit
16 60 460 20000

11t nun_ins num_outs num_fitness_sets

(13 7 1

12

tetweights

)

tttnun_test_cases for fitness set 1
B192
tteen plus n plus carry: inputs

u
eppopooBo
oooooo0so0
601000000

[N -N--]
co

......

plus n plus carry: outputs

Table 1: Part of an Input File

3.2 DISCRETE-TIME DIGITAL FILTERS

3.2.1 Finding Filter Weights Using Evolutionary

Algorithms

Before discussing the evolution of logic circuits that
perform discrete-time digital filtering, the simpler task of
finding filter weights should be briefly mentioned. This is
a problem that has been discussed in the literature in
numerous guises. Given a fixed topology of some
calculation graph, the problem is to use a search algorithm
to find an optimal set of weights for the nodes of the
graph. This approach has been used for everything from
finding a polynomial that fits arbitrary data to finding the
weights of a fixed neural network. The subject of this
section, however, is the case where the topology is not
only unfixed, but also unlimited.

3.2.2

The second category of circuit that has been evolved with
the system is a discrete-time digital filter, in which the
logic circuit must retain a memory of past inputs. In this
type of problem, the input is a series of values

Digital Signal Processing

representing discrete moments in time of a time-varying *~

signal. The output is another series of values that are a
filtered result of the input values. A Low-Pass Filter

~ (LPF) stops all high frequency components of a signal

and lets lower frequency components pass through. The
second graph of Figure 6 shows the frequency domain
transfer function of a 16th order Hamming window low
pass filter, including positive and negative frequencies,
with the center representing zero frequency.

16th Order Hamming Window
06 Y . : Y T .

Signal

FFT Magnitude

0 1 1 1 1 L 2. I A
1 g8 06 04 02 @ 02 064 06 08 1

FIGURE 6: A 16th order Hamming window LPF

In order to evolve a logic gate network that can play the
part of an LPF, a method for evaluating the fitness of the
circuit is needed. The most obvious method would be to
input white noise into the circuit, take the Fast Fourier
Transform (FFT) of the output, and compare it’s
magnitude to the desired transfer function. Better circuits
would then have more of the shape of an LPF, as in the
second graph of Figure 6. The fitness could be the sum of
the errors between the desired transfer function and the
measured one, taken at discrete points in the frequency
domain. To strengthen the performance of the circuit in
the transition band (the transition area between no-pass
and all-pass) or any other area. more measurements could
be taken in that zone.

The problem with this approach is the cost of calculating
an FFT. The number of calculations required for an FFT
is proportional to NlogN, where N is the number of data
points. This problem is compounded by the fact that, due
to the nonlinearity of a network of logic gates, many data
points will be required in order to assure that the circuit
performs as expected with all inputs.

Another method is to calculate the fitness without using
the FFT. A training set of white noise inputs with their

NN o R L e gw

EATVELY

corresponding filtered outputs (calculated in advance)
would be used to evaluate circuits in the population.
Evaluating the circuits in this manner would be much
faster than the FFT, but there are some clear
disadvantages. The first is that pre-generated noise
sequences would be used, which could lead to circuits that
are tuned for the characteristics of those sequences. Using
the FFT method, however, new noise could be generated
at every turn.-The second disadvantage would be in the
calculation of the actual fitness value. Summing the
differences in the time domain will not be as effective for
this type of problem, where the main characteristics of
interest are in the frequency spectrum.

Sampie Nose Input Samg's Cosnes lnput

M ‘V\/\A
V\A-' "j \ ‘ '1

Signal
S o
) o th
e
=

———
S e—_—
ey
_::.
=
w —

FET Magnauds
PR

;‘\/\r it \fi’.S —

' !

11 05 o 05 1

FIGURE 7: Sample Training Data

Having selected the second method. that is, evaluating the
circuit only in the time domain, the next question is how
to implement the process? Two types of input data were
used: white noise and a set of random phase cosines that
cover the spectrum. For the latter input, a random-phase
cosine is added at each integral multiple of the
fundamental frequency. The top graphs of Figure 7 show
samples of the two types of input and the bottom graphs
show their frequency spectra. These input streams, along
with their desired outputs. are then converted into two's
complement 8-bit integers for use with an 8-bit input and
8-bit output network of logic gates. The weights of the
bits are specified in the program input file: the least
significant bit has a weight of one, and then the next bit
has a weight of two, doubling each time until the sign bit,
which has a weight of 128. In this fashion, the fitness
function provides more incentive to get the higher order
bits correct, which should lead to an acceptable answer
much faster.

3.2.3

A new gate type was added to allow the system to evolve
circuits with memory: a register bit. In the software
implementation of this type of circuit, all register bits are
evaluated as if cued by a clock pulse, so that the output of
the register bit will change only once per evaluation. In
this manner signals will not necessarily propagate all the
way to the output bits during a single evaluation of the
output. .

Register Bits

3.2.4 Results

To test this method. a circuit that implements a 16™ order
Hamming window LPF for an 8-bit input was evolved.
The simulation was run using 128 processors of a WinNT
cluster. The training data consisted of twenty white noise
sequences of 64 samples each. along with their desired
solutions. At various times in the simulation, the best
evolved circuit was copied and then examined in a
separate program, by testing it's performance upon
another 200 newly generated white noise inputs.

The graph of Figure 8 shows three different lines. The top
line is the theoretical average output error for a randomly
generated circuit. The middle line is the average output
error for a circuit that was evolved in one hour, consists of
1307 gates. and has a fitness of 25.40% (where 0% is a
perfect circuit). The bottom line is the error of a circuit
that was evolved in four hours. consists of 1933 gates. and
has a fitness of 17.84%. This figure shows clearly that the
process is working, and that as evolution progresses. the
output of the circuits is closer to the desired output.

(=4
2]

o
bt
T
.

error magnitude
© o o
E (4] =2
: T
R

o
w

\ A’V\/\/\/\/\f"\/’\/'\\/\/\/\/\/\’\f,

F~ \«\/‘\//‘V\\V\Arv\f"ﬁ\'\fﬂ»
02 \;’]
0.1 ’
0) L : : : :
10 2 Y] 40 50 60
data sample

FIGURE 8: Error of Evolved LPF Circuits

e acIY I

P S ST MRV A S e

Figure 9 shows the magnitude of the frequency spectrum
for the evolved circuits. The top solid line shows the
average spectrum of the 200 sets of input data. As
expected from white noise, it is mostly flat. The bottom
solid line shows the desired spectrum, i.e. the average
spectrum of the results of applying a true 16™ order
Hamming window LPF to each of the sets of input data.
The remaining lines are the spectra of the evolved
circuits. The earlier circuit is already showing some
lowering in the higher frequencies. The later circuit shows
further attenuation in the higher frequencies, and is
beginning to take the shape of an LPF.

FFT Magnitude

0o o0t 02 03 04 05 06 07 08 09 1
Normalized Frequency

FIGURE 9: FFT Magnitude of Evolved LPF Circuits

These are very promising results: a logic circuit was
evolved that performs a digital signal processing task that
is well within the realm of what was earlier called a "real-
world problem”. However, there are points that need
further investigation before this system can be a practical
signal processing design tool. The most pressing task
remaining is to investigate how many different noise data
points are required in the fitness data in order to guarantee
that the evolved circuit will be able to handle arbitrary
data. If only a single 64-sample dataset is used, it was
found that the evolved circuit performs the task well only
on that dataset. Using twenty datasets led to the successful
results shown earlier, but the question remains as to
whether further evolution would improve the circuit or
cause it to become particularly tuned to the twenty
datasets used.

3.2.5 Related Work

Other research in this area is described in [Miller,99]. The
approach used was to calculate the FFT of the output data
and evaluate the circuits in the frequency domain. The

. inputs were single zero-phase sine waves at integral

multiples of the fundamental frequency of the data.
However, the circuits were not subjected to noise inputs,
or non-zero-phase sines. The resulting circuits were
successful in processing individual sines, but did not
handle linear combinations of sines well.

4 EVOLVABLE HARDWARE

4.1 EVALUATING CIRCUITS IN HARDWARE

Another goal of this work was to use a Field
Programmable Gate Array (FPGA) to evaluate circuits in
the population by programming them onto the chip and
evaluating them directly. The idea of using re-
programmable logic and evolutionary algorithms to
design static or self-correcting logic circuits has been
known as Evolvable Hardware. An example of this can be
found in [Thompson, 97], where evolution occurred at the
lowest level, that is, where FPGA cell functions,
connectivity, and routing were all subject to evolutionary
change. For the work described in this paper, however, it
was desired that the routing not be a factor in the
evolution. If the routing is not a factor then the circuits
evolved will only contain the abstract connectivity
information of the circuit. In this fashion, it is possible to
evolve conjointly in software and in hardware without
requiring the software to perform routing functions.

A method of quickly programming abstract logic circuits
into an FPGA, without having to route them. was
required. A general logic - circuit composed of
multiplexers as inputs to basic logic gates was designed
and routed. Associated with each gate in the abstract’
netlist are three registers. One register determines the
function of the gate (AND. OR. XOR, etc), while the
other two determine from which gates the inputs are read.
A feedforward-only multiplexor circuit with a maximum
of 46 gates was designed, routed and loaded onto a Xilinx
XC4000 FPGA [Xilinx, Inc.] mounted on a FAT-
HOTWorks PCI-Board [Virrual Computer Corporation,
Inc] in a PC running Windows95.

With this multiplexor circuit loaded into the FPGA, any
abstract logic circuit (up to a size limit) can be
implemented with the FPGA simply by writing to three
registers per gate, with no routing required. The largest
abstract circuit that can be programmed in this fashion has
46 gates, 8 inputs and 8 outputs. Once the multiplexor
circuit is programmed to implement a particular abstract
design, then for each input that needs to be tested, the data
is written to the 8-bit input register and then read from the
8-bit output register. -

The motivation for evaluating a circuit directly in the
hardware rather than in a simulation of a logic circuit is
speed. A software simulation of a feedforward logic
circuit must loop forward once through all of the gates,
calculating each output based on it's logic function and
the outputs of the previous gates. The time required for
this loop is assumed to be proportional to the number of
gates, With the hardware implementation there is an
initial up-front time required to program the circuit. Once
this is done, the remaining time required is independent of
the number of gates. This is true because a signal
propagates through the multiplexor network much faster
than the time required to execute the several assembly
language commands that access the input and output
registers through the HOTWorks PCI Board. In other
words, the time required to evaluate any circuit is equal to
the time needed to write the input register plus the time
needed to read the output register.

There is a number of gates that is the break-even point,
where the software evaluation time is the same as the
hardware evaluation time. In this case, on the 95Mhz
Pentium with the HOTWorks card installed, the
approximate break-even point was twelve gates (with 256
input/output fitness data pairs). For a circuit of maximum
size (46 gates), with 256 input/output fitness data pairs,
there was approximately a 4x speedup by evaluating the
circuits in hardware rather than software.

5 CONCLUSIONS

This paper described current work in the area of
synthesizing logic circuits using evolutionary algorithms,
in both software and hardware. The problem is of interest
due to the potential to reduce the required number of
trained engineers for project design. An algorithm was
shown, as well as examples of its use, taking advantage of
both parallel processing and hardware acceleration with
an FPGA. Use of the FPGA was facilitated by the design
of a circuit that can implement any abstract circuit by
simply writing to registers that specify connectivity.

In the area of arithmetic circuits, results were shown that
are as large or larger than others seen in similar research,
though arguably still not large enough to be an effective
design aid. In the novel area of synthesizing logic circuits
to perform digital signal processing tasks, results were
shown to surpass the literature. Circuits were evolved that
perform rough low pass filtering according to user
specifications. In this area the process shows great
potential.

References

J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane,
Genetic Programming III: Darwinian Invention and
Problem Solving,Morgan Kaufmann Publishers, 1999.

J. F. Miller, "Digital Filter Design at Gate-level using
Evolutionary Algorithms", Proceedings of the Genetic
and Evolutionary Computation Conference, Vol. 2,
pp.1127-1134, Morgan Kaufmann, 1999.

M. Mitchell, An Introduction to Genetic Algorithms, MIT
Press, 1996. ’

A. Thompson, "An Evolved Circuit, Intrinsic in Silicon,
Entwined with Physics", Lecture Notes in Computer
Science - Evolvable Systems: From Biology to Hardware,
Vol. 1259, pp. 390-405, Springer-Verlag, 1997.

Virtual Computer
http://www.vcec.com

Corportation, Inc. See

Xilinx, Inc. See http://www.xilinx.com

X. Yao, T. Higuchi, "Promises and Challenges of
Evolvable Hardware", Lecture Notes in Computer
Science - Evolvable Systems: From Biology to Hardware,
Vol. 1259, pp. 55-78, Springer-Verlag, 1997.

R. S. Zebulum, M. A. Pacheco. M. Vellasco, "Evolvable
Systems in Hardware Design: Taxonomy, Survey and
Applications”, Lecture Notes in Computer Science -
Evolvable Systems: From Biology to Hardware, Vol.
1259, pp. 344-358, Springer-Verlag, 1997.

Sandia is a multiprogram laboratory
operated by Sandia Corporation, a
Lockheed Martin Company, for the
United States Department of Energy
under contract DE-AC04-9-$AL85000.

ITRRRE o R D

