Sulfide ceramics in molten-salt electrolyte batteries

PDF Version Also Available for Download.

Description

Sulfide ceramics are finding application in the manufacture of advanced batteries with molten salt electrolyte. Use of these ceramics as a peripheral seal component has permitted development of bipolar Li/FeS{sub 2} batteries. This bipolar battery has a molten lithium halide electrolyte and operates at 400 to 450C. Initial development and physical properties evaluations indicate the ability to form metal/ceramic bonded seal (13-cm ID) components for use in high-temperature corrosive environments. These sealants are generally CaAl{sub 2}S{sub 4}-based ceramics. Structural ceramics (composites with oxide or nitride fillers), highly wetting sealant formulations, and protective coatings are also being developed. Sulfide ceramics show ... continued below

Physical Description

19 p.

Creation Information

Kaun, T.D.; Hash, M.C. & Simon, D.R. June 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 53 times , with 6 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Sulfide ceramics are finding application in the manufacture of advanced batteries with molten salt electrolyte. Use of these ceramics as a peripheral seal component has permitted development of bipolar Li/FeS{sub 2} batteries. This bipolar battery has a molten lithium halide electrolyte and operates at 400 to 450C. Initial development and physical properties evaluations indicate the ability to form metal/ceramic bonded seal (13-cm ID) components for use in high-temperature corrosive environments. These sealants are generally CaAl{sub 2}S{sub 4}-based ceramics. Structural ceramics (composites with oxide or nitride fillers), highly wetting sealant formulations, and protective coatings are also being developed. Sulfide ceramics show great promise because of their relatively low melting point, high-temperature viscous flow, chemical stability, high-strength bonding, and tailored coefficients of thermal expansion. Our methodology of generating laminated metal/ceramic pellets (e.g., molybdenum/sulfide ceramic/molybdenum) with which to optimize materials formulation and seal processing is described.

Physical Description

19 p.

Notes

OSTI as DE95013443

Source

  • 97. annual meeting of the American Ceramic Society, Cincinnati, OH (United States), 30 Apr - 1 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95013443
  • Report No.: ANL/CMT/CP--84744
  • Report No.: CONF-950401--8
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 71658
  • Archival Resource Key: ark:/67531/metadc708919

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • Sept. 12, 2015, 6:31 a.m.

Description Last Updated

  • June 24, 2016, 1:50 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 53

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kaun, T.D.; Hash, M.C. & Simon, D.R. Sulfide ceramics in molten-salt electrolyte batteries, article, June 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc708919/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.