An assessment of antineutrino detection as a tool for monitoring nuclear explosions Metadata

Metadata describes a digital item, providing (if known) such information as creator, publisher, contents, size, relationship to other resources, and more. Metadata may also contain "preservation" components that help us to maintain the integrity of digital files over time.

Title

  • Main Title An assessment of antineutrino detection as a tool for monitoring nuclear explosions

Creator

  • Author: Bernstein, Adam
    Creator Type: Personal
  • Author: West, Todd
    Creator Type: Personal
  • Author: Gupta, Vipin
    Creator Type: Personal

Contributor

  • Sponsor: United States. Department of Energy.
    Contributor Type: Organization
    Contributor Info: US Department of Energy (United States)

Publisher

  • Name: Sandia National Laboratories
    Place of Publication: Albuquerque, New Mexico
    Additional Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)

Date

  • Creation: 1999-06-01

Language

  • English

Description

  • Content Description: The antineutrino is the only real-time nuclear signature from a fission explosion that propagates great distances through air, water, and ground. The size and sensitivity of antineutrino detectors has increased dramatically in the last decade, and will continue to do so in the next, thanks in part to the renewed interest in neutrino physics brought on by the recent discovery that neutrinos may have mass. The evolution of antineutrino detectors, and the evident interest of the signature as a means for monitoring nuclear tests motivates this review of the capabilities of existing and possible future detectors as test ban verification tools. The authors find that existing liquid scintillator ionization detectors, operating a few tens of meters below the Earth's surface and containing a few thousand tons of active material, could be used to monitor an area of a few square kilometers for nuclear explosions at the 1 kt level. Purified water Cerenkov detectors of sizes comparable to existing detectors (50,000 m{sup 3}) could be used to detect 1 kt explosions at distances of a few tens of kilometers. If neutron-absorbing dopants such as sodium chloride or gadolinium could be added to purified water, the resulting background reduction would allow extension of the range for sensitivity to a pulse of 10 antineutrino events from a 1 kt explosion out to approximately 1000 km. Beyond 1000 km, backgrounds from the world's nuclear reactors would become prohibitively large. The engineering hurdles for such detectors would be formidable. The size of a doped detector operating at the 100 km range, suitable for cooperative monitoring of existing nuclear test sites, is about 60 times that of the largest existing water detector, and would require a factor of several dozen more photomultiplier tubes than what is now used in large scale physics experiments. At a price per phototube of $1000, capital costs would amount to several billions of dollars, even for a detector at this modest range. This cost is perhaps the key obstacle to construction, along with excavation requirements and the requirement of high radiopurity for large volumes of water and dopant. Detectors sensitive to a 1 kt explosion at a few kilometer distance would still cost tens of millions of dollars, and are unlikely to be useful except in the context of confidence-building measures.
  • Physical Description: 42 pages

Subject

  • Keyword: Radiation Detectors
  • STI Subject Categories: 98 Nuclear Disarmament, Safeguards, And Physical Protection
  • Keyword: Sensitivity
  • Keyword: Ctbt
  • Keyword: Verification
  • Keyword: Nuclear Explosion Detection
  • Keyword: Antineutrinos
  • Keyword: Neutrino Detection
  • STI Subject Categories: 45 Military Technology, Weaponry, And National Defense

Source

  • Other Information: PBD: 1 Jun 1999

Collection

  • Name: Office of Scientific & Technical Information Technical Reports
    Code: OSTI

Institution

  • Name: UNT Libraries Government Documents Department
    Code: UNTGD

Resource Type

  • Report

Format

  • Text

Identifier

  • Report No.: SAND99-8497
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/751008
  • Office of Scientific & Technical Information Report Number: 751008
  • Archival Resource Key: ark:/67531/metadc708829

Note

  • Display Note: OSTI as DE00751008
Back to Top of Screen