
ANALYTIC STREAMLINE CALCULATIONS ON LINEAR
TETRAHEDRA

Darin P. Diachin' and James A. Herzogt

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, Illinois 60439
{ diachin ,herzog} @mcs. an1 .gov

Abstract

Analytic solutions for streamlines within tetra-
hedra are used to define operators that accurately
and efficiently compute streamlines. The method
presented here is based on linear interpolation, and
therefore produces exact results for linear velocity
fields. In addition, the method requires less com-
putation than the forward Euler numerical method.
Results are presented that compare accuracy mea-
surements of the method with forward Euler and
fourth-order Runge-Kutta applied to both a linear
and a nonlinear velocity field.

1 Introduction

Streamlines are a common tool used to visualize
steady flow fields. They are generated by calculat-
ing integral curves along a given static velocity field
and can be interpreted as the path a massless parti-
cle would follow when placed within the field. The
motion of these massless particles is defined by

(1)
d
ZP(t) = U(P(t)),

where p(t) represents the particle's position within
the field. u(p(t)) is the velocity of the field a t
the given position. and t is a parameter along the
streamline. Throughout this paper we scale t so that
it is equivalent to the time scale of the velocity field.

Many flow fields in engineering and scientific ap-
plications are computed on a discrete mesh by us-
ing finite difference, finite volume, or finite element

'Graduate Research Appointee at ASL. Doctoral candi-
date at Northwestern University in Theoretical and Applied
lCI echanics

t Graduate Research Appointee at ASL. Doctoral candi-
date. at Stanford Cniversity in Scientific Computing and Com-
piitat ional .\lathematics

techniques. The work presented here pertains to cal-
culating streamlines on tetrahedral meshes with ve-
locities defined a t the vertices. Our method can be
applied to hexahedral meshes by decomposing each
cell into five or six tetrahedra. One such decomposi-
tion algorithm is presented by Kenwright and Lane.2

Traditionally, streamlines are calculated by nu-
merically integrating equation l. Care must be
taken to choose an appropriate time step for these
integration techniques to maintain numerical accu-
racy and stability. Darmofal and Haimes provide an
analysis of many integration algorithms used for cal-
culating streamlines.' To ensure numerical stability
and maintain local error bounds, they suggest us-
ing the eigenvalues of the velocity tensor along with
a method-dependent amplification function to com-
pute a time step.

By using analytic solutions for streamlines on lin-
early varying fields, we have eliminated the necessity
for bounding the time step. By discretely stepping
along these analytic streamlines, we achieve accura-
cies that are consistently better than the commonly
used fourth-order Runge-Iiutta method. To main-
tain efficiency, we use a technique similar to a spe-
cialized fourth-order Runge-Kutta method by Siko-
rski et al. '. Our method requires fewer computa-
tions than the forward Euler integration technique
implemented with a constant time step, provided
enough memory is available to store a 3 x 3 ma-
trix and a 3-vector for every cell through which the
streamline passes. \Ve will refer to our method as
ANTS, abbreviated for analytic time stepping.

The remainder of this paper is organized as fol-
lows. In the next section we review the general
framework for computing streamlines, and in sec-
tion 3 we provide an overview of the specialized
fourth-order Runge-Kutta (SRIi4) method men-
tioned above. Sections 1 and 5 present the analytic
solutions for streamlines and their subsequent inte-
gration into the AKTS algorithm. Section G presents

- I cs3

oi c m
0
4

0
0
€33

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its usc would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement. recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

a few important aspects of our implementation, and
section 7 provides accuracy and timing results for
streamline calculations performed on both linear and
nonlinear velocity fields. Section 8 summarizes our
conclusions.

2 Calculating Streamlines

Pick a seed location, p(O), for a streamline
t + O
While the particle is in the domain

Locate the mesh cell containing p (t)
Transform the cell into computational

While the particle is in the cell

(1)
space if necessary

Interpolate the particle's velocity (2)

Integrate equation 1 to get the

t + t + h

at time t

particle's position at time t + h
(3,4)

Endwhile
Map the streamline back to physical (1)

space if necessary
Endwhile

Figure 1: Common numerical algorithm for comput-
ing streamlines

The general algorithm for calculating a stream-
line on a discrete mesh is provided in Figure 1. The
first important step is locating the cell in the mesh
that contains the initial position of the streamline.
While the efficiency of an algorithm for searching an
entire mesh to locate this cell is largely dependent on
the shape of the domain and the nature of the mesh
data structure, much work has been done develop-
ing general-purpose algorithms for point location in
individual cells. In particular, there exist efficient al-
gorithms for point location in both tetrahedral and
hexahedral cells.'

With some streamline calculation algorithms the
numerical integration of equation 1 is performed
more efficiently in a transformed space.6 While we
perform our integration in physical space, we do
use a transformation from physical coordinates to
canonical coordinates to formulate the governing
equation for a st reamline. This transformation is
discussed in section 4.

Interpolation techniques are required to estimate
the velocity i n equation 1 a t any point in the do-
main using the discrete velocity values at nearby

grid points. ANTS is based on linear interpolation
which provides a continuous velocity field over the
entire domain. However, the method results in dis-
continuities in the acceleration at cell boundaries for
nonlinear velocity fields. Linear interpolation is also
described in detail in section 4.

The steps responsible for introducing numerical
error are numbered on the right-hand side of Figure
1. The first source of error is associated with the
transformation to computational space. This error
is generally greater for hexahedral cells due t o the
nonlinear transformations commonly used.2* Since
ANTS does not require a transformation to compu-
tational space, i t does not introduce error of type
1.

Type 2 error is introduced when the interpolation
function does not match the nature of the velocity
field. For example, linear interpolation is exact only
on linearly varying fields. In the case of a quadrati-
cally varying field, type 2 error can be managed by
using quadratic interpolation techniques or, less ef-
fectively, by reducing the cell size.

Two types of error are associated with integrating
equation 1 using linear interpolation on tet meshes.
Type 3 error is the numerical error introduced by
the specific integration technique and is the type of
error that is greatly reduced with ANTS. Type 4
error is associated with the discontinuity in acceler-
ation across cell boundaries. Care must be taken to
limit the amount of velocity information used from
a given cell in calculations performed in neighboring
cells. For instance, ANTS, SRK4, and forward EU-
ler schemes all use velocity information interpolated
at a position near a face of a cell to track across the
boundary into a neighboring cell. If the time step
is too large, a significant amount of error will be
introduced due to the discontinuity in acceleration.
Fourth-order Runge-Kutta has the same problem if
one-fourth the time step is sufficiently large.

Type 4 error can be eliminated using the results
presented in section 5 of this paper. The process re-
quires computing successive intersections of the an-
alytic solution with subsequent cell faces. However,
this process is. in general, computationally more ex-
pensive than XXTS.

3 Specialized Fourth-Order Runge-
Kutta Method

The ANTS algorithm is based on a specialized
version of the fourth-order Runge-Kutta (SRK4)
method." I n this method. Sikorski et. al. use a linear
interpolat ion function on tet rahetlra to reduce each

time step of the integration to a matrix-vector multi-
plication and a vector-vector addition, provided the
tet geometry and velocity data are static and a con-
stant time step is used. They demonstrate how the
fourth-order Runge-Kutta formulae in this case can
be reduced to a linear operation,

p(-t + h) = Hp(-t) + d,
where H is a constant 3 x 3 matrix, d is a constant
3-vector, and p (t) is any position within the tetrahe-
dron. We will refer to H as the time-stepping matrix
and d as the time-stepping vector, and we will re-
fer to equation 2 as the time-stepping formula. Note
that the time step for SRK4 must be carefully chosen
to maintain numerical stability. We show in this pa-
per that error due to integration can be reduced by
computing the time-stepping matrix and vector us-
ing the analytic solution to the streamline instead of
the fourth-order approximation used in SRK4. The
new algorithm for calculating streamlines is provided
in figure 2.

Calculate the time-stepping matrix and time-
stepping vector for each cell using the
analytic formulation for streamlines

Pick a seed location, p(O), for a streamline
t + O
While the particle is in the domain

Locate the mesh cell containing p(t)
While the particle is in the cell

Calculate p (t + h) using the time-

t - - t + h
stepping formula

Endwhi l e
Endwhi l e

Regarding notation, we use the variable name n
for positions in canonical space and v for canoni-
cal velocities, while p and u represent the respec-
tive quantities in physical coordinates (see figure 3).
Further, the following subscript convention. is used
to relate tets under the transformation from physical
to canonical space: variables with subscript zero cor-
respond to data defined on the vertex mapped to the
canonical origin, subscript one corresponds to data
on vertices mapped to (1,0,0), subscript two corre-
sponds to (0,1,0) and subscript three corresponds to
vertex (0, 0 , l) . We refer to po as the tetrahedron’s
origin vertex.

Figure 3: The tetrahedron on the left represents a
cell in physical coordinates, and the tetrahedron on
the right is the canonical tetrahedron.

4.1 Linear Interpolation

A linear interpolation scheme assumes that both
scalar and vector data vary linearly in each coordi-
nate direction within the cell. The scalar interpola-
tion formula for the canonical tet is

Figure 2: Analytic time-stepping
puting streamlines

, algorithm for com- s(E, v,<) = (si - so)< + (~ 2 - S O) ~ + (s3 - SO)< + so,

where s could represent any of a number of scalar pa-
rameters, including temperature or chemical species
concentration. Here, SO, sl,s~, and sg are the values
of s at the vertices.

The vector interpolation formula is analogous:

(3)

4 Governing Equation

In this section we formulate the governing equa-

stepping matrix and vector. The derivation com-
prises two fundamental steps: first. the linear in-
terpolation function is used to derive the equation
for streamlines i n canonical coordinates, and second.
the canonical equation is mapped into physical space
by using the transformation between the two spaces.

tion for streamlines that is used in deriving the time- v(5, V,<) = (v1 - V 0) E + (V? - V0)V (4)
+(v3 - V0)C + vo

= VI1 + vo.
The matrix V has columns containing the difference
of the vertex velocity vectors in canonical coordi-
nates. Noting that the velocity is the time derivative

of the position, n (t) , and writing each coordinate in
terms of the time t , we have the governing equation
for a streamline in canonical coordinates:

4.2 Transformation from Physical
to Canonical Coordinates

Transformations between physical space and com-
putational space are common for streamline calcula-
tion algorithms on both tetrahedral and hexahedral
meshes. For example, transformations are often used
in point location and data interpolation algorithms.
In the case of tetrahedral meshes, a point is deter-
mined to be in a given cell if the point’s canonical
coordinates with respect to the cell are all greater
than zero and the sum of the canonical coordinates
is less one. Further, linear interpolation in physi-
cal coordinates for scalar or vector quantities can
be performed by mapping into canonical coordinates
and applying equation 3 or 4, respectively.

A distinct advantage of using tetrahedral cells
rather than hexahedral cells is that the transforma-
tion from physical space to canonical space is lin-
ear. This property allows for an analytic solution to
the inverse transformation, which is essential to the
derivation of the analytic solutions for streamlines
in physical coordinates. In the case of hex cells, the
transformation to computational space is nonlinear
and requires expensive iterative methods to perform

The transformation from physical to canonical co-
2

ordinates is provided below:

Here, B is the inverse of the 3 x 3 matrix containing
the vectors along the edges emanating from the tet’s
origin vertex (see Figure 3).

Several quantities related to the transformation,
which are used in deriving the defining equation for
streamlines in physical coordinates. are provided be-
low:

U is the matrix with columns containing the differ-
ence in vertex velocities, and uo is the velocity at
the tet’s origin. We derive the governing equation
for streamlines in physical coordinates by replacing
the quantities above into the governing equation for
streamlines in canonical coordinates (equation 5) :

5 Analytic Solutions

This section outlines the methods for deriving the
time-stepping matrix and time-stepping vector us-
ing analytic solutions to equation 7. There are four
general subsets of solutions to this equation depend-
ing on the rank of A. Each case is presented inde-
pendently below. For ease of notation, the physical
coordinates, p (((t) , q (t) , c (t)) , will be written as a
function o f t for the remainder of this paper. Also,
we equate the rank of the system with the rank of
A .

5.1 Rank Three Systems

The solution to equation 7 for a full rank system
is provided below:

where p (0) is the initial physical position. The ma-
trix eAt is the exponential of the matrix At and is
defined with the power series

(9)
A3t2

eAt = I + At + +
The exponential matrix is discussed further by Moler
and Van Loan.3 Note that A has full rank in this
case, and therefore the inverse of A exists.

The time-stepping formula provides the position
of the particle a t time t + h for a constant time step
h. The formula is derived by evaluating p(t +h) and
writing the result in terms of p (t) :

p(t + 1 1) = ed(t th)k l + k?,
=
= [-ID(!) + d .

e A h p (t) + (I - eAh)k2,

This formulation uses the property of exponential
matrices that exp(A(t + h)) = exp(dt) exp(Ah) for
scalars t and h.

5.2 Rank Two Systems

The solutions to the governing equation for rank
deficient systems can be derived by changing coor-
dinate systems, 6 = W p , where Vt' is orthonormal
mapping. The critical step is to find this mapping
W under which the transformed matrix, d, has the
appropriate number of zero rows. A rank two 4 ma-
trix will have one zero row, and a rank one A will
have two zero rows. In the case of a rank two sys-
tem, the governing equation is written in the new
coordinate system as follows:

611 612 613

w 3 ,
* = [1z.1 6 2 6 3]'=fi0-&50.

The solution in t.he z' coordinate is found using direct
integration of the constant G3,

E(t) = G3t + q o) , (11)
where Z(0) is the initial z' coordinate. We will refer
to the solution in the f and g coordinates F (t) =
[2(tIl mlT:

t l l = 62151262261, t 2 l = 6126236112712,
t l 2 = -52161261363, t22 = -612621623'63,
t13 = c1261162363,
t14 = 61351162263,
t15 = 612523522631

t23 = 523622613631
224 = fi2151162261,
t25 = 621z11613631

t l 6 = -6135;263,
t17 = -6115;262,
t18 = -;226:1611

t26 = -512z;1@ll
t27 = -6226:162,
t28 = -6235:163.

Note if det(d) = 0 another orthonormal mapping W
would have to be used to achieve a solution of this
form.

The time-stepping matrix and vector in the tilde
coordinate system are found using the same pro-
cedure used for the rank three system. Position
e(t + h) = [P(t + h) , ,Z(t + h)lT is calculated and
written in terms of $(t). The results are below:

Finally, & and a are mapped into physical coor-
dinates using the following transformations:

H = WI?WT, (13)
d = WTa.

5.3 Rank One Systems
~ (t) = e'' [P(o) - Plz(0) - P3] + a t + Plz(0) + Pz,

611 613 Rank one systems are solved similarly to rank two
systems. An orthonormal mapping is used such that
the two bottom rows of 2 are zeroed:

A =

P (t) is a function of the exponential of the left prin-
ciple submatrix of .&, the initial position G(0) =
[E(O), $(O), Z(O)]*. and the 2-vectors alp1, and Pz
defined below:

The solutions in and z' are both linear in t , and Z
is a function of fi(O), the exponential of i i l l , and the
scalars a and ,B defined below:

PI = -
1=1

3

L

Note if 611 = 0, another orthonormal mapping W
would have to be employed to achieve a solution hav-
ing the above form.

The time-stepping matrix and vector quantities
are derived analogously to the rank three and two
methods:

1 1

These quantities are mapped into physical space us-
ing transformations in equation 13.

5.4 Rank Zero

Rank zero systems occur when the four veloci-
ties at the vertices are the same, thus resulting in
a zero difference matrix. In such a tet, a particle
will track parallel to this velocity value, u. There-
fore, the time-stepping matrix is simply the identity
matrix and the time-stepping vector is d = hu.

6 Imdementation

In this section we discuss four important issues
relevant to our implementation of ANTS. The first
issue pertains to the determination of the rank of A .
We use a two-step process. First we compute the de-
terminant. If det(-4) is sufficiently large with respect
to the infinity norm of A (greater than lo-"), we
conclude the rank of A is three; otherwise, we com-
pute the singular value decomposition, A = U D S V ~ .
The matrices UD and VD are orthonormal, and S is
a diagonal matrix of singular values, ul, u2, and u3.
The numerical rank is defined to be the number of
ratios 2, 2, and E greater than machine precision.

Second, the singular value decomposition is also
used to implement the rank deficient system coordi-
nate mapping discussed in section 3. We use Uz to
map physical space into the appropriate coordinates:

6 = u;p. (14)
Substituting into equation 7 gives .< = S V D U ~ .

Third. we consider the treatment of rank three
systems that are numerically rank two (and simi-
larly rank two matrices that are numerically rank
one). \Ye have performed several tests that involved
coniparing the rank two time-stepping matrix with

the resulting time-stepping matrix for a slightly per-
turbed, numerically rank three system. We have ob-
served that the difference between the two matrices
is consistent with the perturbation. This suggests
i t is acceptable to approximate solutions of numer-
ically rank two systems with exact rank two solu-
tions. We are currently developing the theory to
study this question quantitatively. Note this prob-
lem can be side-stepped using SRK4 to compute the
time-stepping quantities for numerically rank defi-
cient systems.

Finally, Moler and Van Loan discuss numerous
methods for calculating the exponential of a m a t r i ~ . ~
We prefer the matrix decomposition methods be-
cause the decomposition of the matrix A can be per-
formed once and used in the efficient calculation of
exp(At) for all scalar values oft . In particular, we
use the Schur decomposition, A = Z T Z T , where Z
is an orthonormal matrix and T is quasi-upper trian-
gular. The exponential of At is calculated as follows:

e'' = ZeT'ZT. (15)
To compute exp(Tt), we use an algorithm in which
the exponential of the block diagonals of T are calcu-
lated explicitly, and the off-diagonals are calculated
by using a recursive relation involving the exponen-
tiated block diagonal^.^

7 Results

The analytic method (ANTS) was compared with
two common numerical methods, first order forward
Euler (FE) and fourth-order Runge-Kutta (RK4).
Critical points of the analysis include the accuracy,
computation time, and memory required by the var-
ious algorithms.

Given any velocity field u(p(t)) and initial posi-
tion PO, the numerical methods provide an approx-
imate solution in the form of a sequence of points
(pi) for i = 0 . . . IV, with pi x p(ti) for some discrete
time t i . iVe denote the ith time-step by hi = ti-ti-1
for i = 1,. . . , N. The two numerical methods FE
and RK4 can be defined by the method used to ob-
tain pi from pi-1. For Forward Euler,

Fourth-order Runge-Kutta is defined by

Accuracy 01 ~umetlcal Integrators

'. .__.__...._..
16,.. :: _..____........... :.,

- - RK4
... . halyac

14 -

12 -

10 -
c

6 - .-
4 - .* .*

.* _._.-.-. _._._.--' _.-.-. _.-. _.-.-.-. 2 -
_.-.-.

__a. ._- -.
00.5 1 1.5 2 2.5 3

-log(h)

.

The accuracy and stability of the methods are
dependent upon the selection of hi Our analysis
includes both constant time step solutions and time-
adapted solutions. The time step mas adapted based
on a variation of the method proposed by Haimes
and Darmofal for steady flow fields' in which the
velocity tensor was evaluated and used to select a
time step that would control the average global error
of the result.

Two model flow fields were used to test the meth-
ods. The first is similar to that used by several
researchers.'# The velocity field is given by the
linear function

'u1(2,?/,2) = - X - 3 Y ,
211(2,y,z) = - y + 3 2 ,
w1(.Z,y,z) = -2.

Provided with initial coordinate (ZO, yo, Z O) , this
field has exact streamlines given by

Xl(t) = e-' (XO cos(3t) - yo sin(3t)), (25)
yl(t) = e-' (20 sin(3t) + yo cos(3t)), (26)
z l (t) = :oe-'. (27)

The field has the notable property that it is inter-
polated exactly on the cells used for our methods.
Therefore, any error introduced into the solution is
a result of the numerical method. A second field,
which is not interpolated exactly, was used to inves-
tigate the behavior of AXTS for nonlinear fields and
is given by

This field has the exact solution

C ? (t) = (P o - . 2 t) cos(eo + 2t),
y?(t) = (yo - .2t)sin(& + 2 t) ,
:?(t) = roe-'. where

ro = d G , and
00 = arctan(yo/ro).

Two measures of accuracy are used to evaluate
the uirthods. The final error is defined to be E j =

Figure 4: Order of the methods, using field 1

IIPN-P(tN)ll. Our definition of average global error,

. N
1

E = - hillpi - p(t')ll, where (36)
Tf i=l
N

i= l
(37)

is adapted from that given by Darmofal and
Haimes.'

All software was written in C, and the numerical
results were obtained on a Silicon graphics worksta-
tion with a single, 100 MHz MIPS R4000 processor.
A cubic mesh with 1000 cubic cells was decomposed
into a tetrahedral mesh. Streamline calculations for
field 1 were initiated with po = (-.5, -.6, -.4) and
terminated once the time had accumulated beyond
4.0 units. Streamlines for field 2 were initiated with
po = (1.2, .2, .2) and terminated at 5.0 time units.

The orders of the methods in terms of the final er-
rors are depicted in figure 4. The numerical methods
are as expected, with FE having order 1 and RK4
having order 4. The order of the analytical solution
is approximately machine precision at 15. The small
reduction in accuracy with smaller time steps can be
attributed to cumulative roundoff errors. Figure 5
depicts the calculated streamlines for a large fixed
time step on field 1. The time step has been chosen
such that the RK4 stability limit is exceeded.' The
analytic solution remains accurate and stable under
these conditions. Figure G shows the streamlines as
calculated for field 2. Here we see that FE is unsta-
ble, RK4 is stable but not very accurate, and ANTS
is stable and accurate. In order to provide the full
picture, figures 7 and 8 show c and y as functions of

,

2-

1.5 -

1 -

0.5 -

0 -

-0.5 -

-1 -

-1.5 -

-2.
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X

I

I
I I q I\,

I _:.. I a-

Figure 5: Plots of the solutions with constant h =
.90 on linear velocity field

2.5 -
2 -

1.5 -

1 -

>.

0.5 -

0 -

-0.5 -

- - Forward Eu&r

- - RK4

Analytic

- TNE

-1 -0.5 0 0.5 1 1 .5
X

Figure 6: Plots of the solutions with constant h =
.90 on nonlinear velocity field

t . Note that we restrict our graphs to the x-y plane
because these are the more interesting views.

Timing results were obtained by averaging 100
streamline calculations on field 1. The best per-
formance of ASTS is obtained by precomputing H
and d for each cell and then using (2) to compute
the streamlines. The first set of timing results uses
precomputed matrices and involves streamlines com-
puted with a predetermined constant time step. The
time required for the AXTS solution was typically
.GB and .28 times that required for FE and RK4, re-
spectively. For a mesh with a large number of cells,
computer meinor>- may not be available to precom-
pute and store H and d. In this case, the ANTS
solution took 2.3 times as long as FE and was ap-

Figure 7: Solution on nonlinear field h = .90

.-.-Forward Euler
- - RK4
'".' Analylic

- TNE
I

i

-1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
'

I

Figure 8: Solution on nonlinear field h = .90

proximately equal in speed to RK4.
In the previous timings, all methods completed

the same number of time steps and obtained differ-
ent levels of accuracy. A more meaningful compari-
son of computational costs was obtained by adapting
the time step and requiring that all of the methods
satisfy a given bound of the average global error.
This takes into account the fact that less accurate
methods require smaller, and hence more, time steps
to obtain a solution of comparable accuracy. The
timing data were obtained by specifying a bound on
the average global error and solving a modified form
of the time step equation given by Darmofal and
Haimes.'

The computation time is plotted against the er-
rors obtained by the methods in figure 9. The
curve for FE contains only two data points, in or-

8

Figure 9: Computation time as a function of average
global error requirements.

Table 1: Timings for matrix computations, 1 unit
equals the time required for a single Ar + b compu-
tation where A is a 3 x 3 matrix

Matrix Time (units)
Transform 3.2
A 3.1
A-1 2.0
Schur decomposition 29.5
H and d 10.4

der to preserve the scale on the timing axis. Clearly,
however. FE is computationally expensive compared
with RK4 and AXTS. In the graph. the ANTS so-
lutions appear to become faster as the tolerance de-
creases. However. the analytic solutions were com-
puted on the same time steps as the RK4, and the
behavior observed corresponds to increases in cu-
mulative roundoff error as the time step is adapted
to the error requirement. The ASTS solutions are
faster and more accurate than RK4 in this case.

Because precomputed matrices require a large
amount of computer memory for storage and im-
prove the speed of the streamline calculations, times
required to conipute the respective matrices are
given in table 1. The times have been normalized by
the time required to compute a matrix vector multi-
plication followed by a vector addition. These tim-
ings were obtained by averaging the times required
for approximately 30,000 matrix evaluations on field
2. The balance of memory use and computational
speed will depend on available resources and prior-
ities for a given application. If the time steps are
known at initialization time. it is recommended that
M and d he computed and stored for each cell. I f the

time step is not known until computation time, pre-
computation and storage of A, A-I , and the Schur
decomposition will speed the calculation of H and d
once a time step is selected.

8 Conclusion

We have taken advantage of the fact that ana-
lytic solutions exist for streamlines in a linear veloc-
ity field to find analytic solutions to linearly inter-
polated fields resulting from many flow-solving tech-
niques. The accuracy of the analytical streamlines is
approximately machine precision and superior to the
results from the common forward Euler and fourth
order Runge-Kutta methods. In addition, by pre-
computing matrices associated with the analytical
technique, the streamline calculations require less
time than do both numerical methods. Therefore,
if storage memory is available, the analytic solver
provides faster more accurate results than the two
numerical methods tested.

The analytical method also appears to provide
stable solutions even when numerical methods have
failed. The test case of an inward-spiraling flow illus-
trated that both of the numerical methods can fail
to properly capture the proper flow pattern, whereas
the analytical method succeeded.

Acknowledrrements
This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Computational and
Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38. The authors
would like to thank Paul Plassmann, Carl Ollivier-
Gooch, and Lori Freitag for helpful and insightful
conversations regarding the work presented in this
paper.

References
[l] D. L. Darmofal and R. Haimes. An analysis of

3d particle path integration algorithms. Journal
of Co mp ut a t ion a1 Physics, 123 : 182- 195 , 1995.

[2] David N. Kenwright and David A. Lane. Opti-
mization of time-dependent particle tracing us-
ing tetrahedral decomposition. In Proceedings
of Visualization '9.5, pages 321-327. IEEE Com-
puter Society Press, 1995.

[3] C'leve Moler and C'liarles Van Loan. Sineteen
dubious ways to compute the esponential of a
matrix. Sl,-l.II Rericrr, 20:d01-8:32, 1978.

[4] B. N. Parlett. A recurrence among the elements
of functions of triangular matrices. Linear Alge-
bra and A s Applications, 14:11i-1211 1976.

[5] K. Sikorski S. K. Ueng and Kwan-Liu Ma. Fast
algorithms for visualizing fluid motion in steady
flow on unstructured grids. In Proceedings of Vi-
sualization '95, pages 313-320. IEEE Computer
Society Press, 1995.

[6] Susumu Shirayama. Processing of computed vec-
tor fields for visualization. Journal of Computa-
tional Physics, 106:30-41, 1993.

The submitted manuscript has been created
by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 with
the U S . Department of Energy. The U.S.
Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of
the Government.

10

Report Number

"ubi. Date (1 1)

E R
Sponsor Code (1 8)
J C Category (1 9)

DOE

