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Abstract 

Analytic solutions for streamlines within tetra- 
hedra are used to define operators that  accurately 
and efficiently compute streamlines. The method 
presented here is based on linear interpolation, and 
therefore produces exact results for linear velocity 
fields. In addition, the method requires less com- 
putation than the forward Euler numerical method. 
Results are presented that  compare accuracy mea- 
surements of the method with forward Euler and 
fourth-order Runge-Kutta applied to  both a linear 
and a nonlinear velocity field. 

1 Introduction 

Streamlines are a common tool used to visualize 
steady flow fields. They are generated by calculat- 
ing integral curves along a given static velocity field 
and can be interpreted as the path a massless parti- 
cle would follow when placed within the field. The 
motion of these massless particles is defined by 

(1) 
d 
ZP(t)  = U(P(t)), 

where p(t) represents the particle's position within 
the field. u(p(t)) is the velocity of the field a t  
the given position. and t is a parameter along the 
streamline. Throughout this paper we scale t so that 
it is equivalent to the time scale of the velocity field. 

Many flow fields in engineering and scientific ap- 
plications are computed on a discrete mesh by us- 
ing finite difference, finite volume, or finite element 
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techniques. The work presented here pertains to  cal- 
culating streamlines on tetrahedral meshes with ve- 
locities defined a t  the vertices. Our method can be 
applied to hexahedral meshes by decomposing each 
cell into five or six tetrahedra. One such decomposi- 
tion algorithm is presented by Kenwright and Lane.2 

Traditionally, streamlines are calculated by nu- 
merically integrating equation l. Care must be 
taken to choose an appropriate time step for these 
integration techniques to maintain numerical accu- 
racy and stability. Darmofal and Haimes provide an 
analysis of many integration algorithms used for cal- 
culating streamlines.' To ensure numerical stability 
and maintain local error bounds, they suggest us- 
ing the eigenvalues of the velocity tensor along with 
a method-dependent amplification function to com- 
pute a time step. 

By using analytic solutions for streamlines on lin- 
early varying fields, we have eliminated the necessity 
for bounding the time step. By discretely stepping 
along these analytic streamlines, we achieve accura- 
cies that are consistently better than the commonly 
used fourth-order Runge-Iiutta method. To main- 
tain efficiency, we use a technique similar to  a spe- 
cialized fourth-order Runge-Kutta method by Siko- 
rski et al. '. Our method requires fewer computa- 
tions than the forward Euler integration technique 
implemented with a constant time step, provided 
enough memory is available to store a 3 x 3 ma- 
trix and a 3-vector for every cell through which the 
streamline passes. \Ve will refer to our method as 
ANTS, abbreviated for analytic time stepping. 

The remainder of this paper is organized as fol- 
lows. In the next section we review the general 
framework for computing streamlines, and in sec- 
tion 3 we provide an overview of the specialized 
fourth-order Runge-Kutta (SRIi4) method men- 
tioned above. Sections 1 and 5 present the analytic 
solutions for streamlines and their subsequent inte- 
gration into the AKTS algorithm. Section G presents 
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a few important aspects of our implementation, and 
section 7 provides accuracy and timing results for 
streamline calculations performed on both linear and 
nonlinear velocity fields. Section 8 summarizes our 
conclusions. 

2 Calculating Streamlines 

Pick a seed location, p(O), for a streamline 
t + O  
While the particle is in the domain 

Locate the mesh cell containing p ( t )  
Transform the cell into computational 

While the particle is in the cell 

(1) 
space if necessary 

Interpolate the particle's velocity (2) 

Integrate equation 1 to get the 

t + t + h  

at time t 

particle's position at time t + h 
(3,4) 

Endwhile 
Map the streamline back to physical (1) 

space if necessary 
Endwhile 

Figure 1: Common numerical algorithm for comput- 
ing streamlines 

The general algorithm for calculating a stream- 
line on a discrete mesh is provided in Figure 1. The 
first important step is locating the cell in the mesh 
that contains the initial position of the streamline. 
While the efficiency of an algorithm for searching an 
entire mesh to locate this cell is largely dependent on 
the shape of the domain and the nature of the mesh 
data structure, much work has been done develop- 
ing general-purpose algorithms for point location in 
individual cells. In particular, there exist efficient al- 
gorithms for point location in both tetrahedral and 
hexahedral cells.' 

With some streamline calculation algorithms the 
numerical integration of equation 1 is performed 
more efficiently in a transformed space.6 While we 
perform our integration in physical space, we do 
use a transformation from physical coordinates to 
canonical coordinates to formulate the governing 
equation for a st reamline. This transformation is 
discussed in section 4. 

Interpolation techniques are required to estimate 
the velocity i n  equation 1 a t  any point in the do- 
main using the discrete velocity values at  nearby 

grid points. ANTS is based on linear interpolation 
which provides a continuous velocity field over the 
entire domain. However, the method results in dis- 
continuities in the acceleration at cell boundaries for 
nonlinear velocity fields. Linear interpolation is also 
described in detail in section 4. 

The steps responsible for introducing numerical 
error are numbered on the right-hand side of Figure 
1. The first source of error is associated with the 
transformation to computational space. This error 
is generally greater for hexahedral cells due t o  the 
nonlinear transformations commonly used.2* Since 
ANTS does not require a transformation to  compu- 
tational space, i t  does not introduce error of type 
1. 

Type 2 error is introduced when the interpolation 
function does not match the nature of the velocity 
field. For example, linear interpolation is exact only 
on linearly varying fields. In the case of a quadrati- 
cally varying field, type 2 error can be managed by 
using quadratic interpolation techniques or, less ef- 
fectively, by reducing the cell size. 

Two types of error are associated with integrating 
equation 1 using linear interpolation on tet meshes. 
Type 3 error is the numerical error introduced by 
the specific integration technique and is the type of 
error that  is greatly reduced with ANTS. Type 4 
error is associated with the discontinuity in acceler- 
ation across cell boundaries. Care must be taken to  
limit the amount of velocity information used from 
a given cell in calculations performed in neighboring 
cells. For instance, ANTS, SRK4, and forward EU- 
ler schemes all use velocity information interpolated 
at  a position near a face of a cell to track across the 
boundary into a neighboring cell. If the time step 
is too large, a significant amount of error will be 
introduced due to the discontinuity in acceleration. 
Fourth-order Runge-Kutta has the same problem if 
one-fourth the time step is sufficiently large. 

Type 4 error can be eliminated using the results 
presented in section 5 of this paper. The process re- 
quires computing successive intersections of the an- 
alytic solution with subsequent cell faces. However, 
this process is. in general, computationally more ex- 
pensive than XXTS. 

3 Specialized Fourth-Order Runge- 
Kutta Method 

The ANTS algorithm is based on a specialized 
version of the fourth-order Runge-Kutta (SRK4) 
method." I n  this method. Sikorski et. al. use a linear 
interpolat ion function on tet rahetlra to reduce each 



time step of the integration to  a matrix-vector multi- 
plication and a vector-vector addition, provided the 
tet  geometry and velocity data are static and a con- 
stant time step is used. They demonstrate how the 
fourth-order Runge-Kutta formulae in this case can 
be reduced to a linear operation, 

p(-t + h)  = Hp(-t) + d, 
where H is a constant 3 x 3 matrix, d is a constant 
3-vector, and p ( t )  is any position within the tetrahe- 
dron. We will refer to H as the time-stepping matrix 
and d as the time-stepping vector, and we will re- 
fer to equation 2 as the time-stepping formula. Note 
that the time step for SRK4 must be carefully chosen 
to  maintain numerical stability. We show in this pa- 
per that  error due to integration can be reduced by 
computing the time-stepping matrix and vector us- 
ing the analytic solution to the streamline instead of 
the fourth-order approximation used in SRK4. The 
new algorithm for calculating streamlines is provided 
in figure 2. 

Calculate the time-stepping matrix and time- 
stepping vector for each cell using the 
analytic formulation for streamlines 

Pick a seed location, p(O), for a streamline 
t + O  
While the particle is in the domain 

Locate the mesh cell containing p(t) 
While the particle is in the cell 

Calculate p ( t  + h)  using the time- 

t - - t + h  
stepping formula 

Endwhi l e  
Endwhi l e  

Regarding notation, we use the variable name n 
for positions in canonical space and v for canoni- 
cal velocities, while p and u represent the respec- 
tive quantities in physical coordinates (see figure 3). 
Further, the following subscript convention. is used 
to relate tets under the transformation from physical 
to canonical space: variables with subscript zero cor- 
respond to  data  defined on the vertex mapped to  the 
canonical origin, subscript one corresponds to  data  
on vertices mapped to (1,0,0),  subscript two corre- 
sponds to  (0,1,0) and subscript three corresponds to  
vertex (0, 0 , l ) .  We refer to po as the tetrahedron’s 
origin vertex. 

Figure 3: The tetrahedron on the left represents a 
cell in physical coordinates, and the tetrahedron on 
the right is the canonical tetrahedron. 

4.1 Linear Interpolation 

A linear interpolation scheme assumes that both 
scalar and vector data  vary linearly in each coordi- 
nate direction within the cell. The scalar interpola- 
tion formula for the canonical tet is 

Figure 2: Analytic time-stepping 
puting streamlines 

, algorithm for com- s(E,  v,<) = (si - so)< + ( ~ 2  - S O ) ~  + (s3 - SO)< + so, 

where s could represent any of a number of scalar pa- 
rameters, including temperature or chemical species 
concentration. Here, SO, sl,s~, and sg are the values 
of s at  the vertices. 

The vector interpolation formula is analogous: 

(3) 

4 Governing Equation 

In this section we formulate the governing equa- 

stepping matrix and vector. The derivation com- 
prises two fundamental steps: first. the linear in- 
terpolation function is used to derive the equation 
for streamlines i n  canonical coordinates, and second. 
the canonical equation is mapped into physical space 
by using the transformation between the two spaces. 

tion for streamlines that is used in deriving the time- v(5, V,<) = (v1 - V 0 ) E  + (V? - V0)V (4) 
+(v3 - V0)C + vo 

= VI1 + vo. 
The matrix V has columns containing the difference 
of the vertex velocity vectors in canonical coordi- 
nates. Noting that the velocity is the time derivative 



of the position, n ( t ) ,  and writing each coordinate in 
terms of the time t ,  we have the governing equation 
for a streamline in canonical coordinates: 

4.2 Transformation from Physical 
to Canonical Coordinates 

Transformations between physical space and com- 
putational space are common for streamline calcula- 
tion algorithms on both tetrahedral and hexahedral 
meshes. For example, transformations are often used 
in point location and data interpolation algorithms. 
In the case of tetrahedral meshes, a point is deter- 
mined to  be in a given cell if the point’s canonical 
coordinates with respect to the cell are all greater 
than zero and the sum of the canonical coordinates 
is less one. Further, linear interpolation in physi- 
cal coordinates for scalar or vector quantities can 
be performed by mapping into canonical coordinates 
and applying equation 3 or 4, respectively. 

A distinct advantage of using tetrahedral cells 
rather than hexahedral cells is that the transforma- 
tion from physical space to  canonical space is lin- 
ear. This property allows for an analytic solution to 
the inverse transformation, which is essential to the 
derivation of the analytic solutions for streamlines 
in physical coordinates. In the case of hex cells, the 
transformation to computational space is nonlinear 
and requires expensive iterative methods to perform 

The transformation from physical to canonical co- 
2 

ordinates is provided below: 

Here, B is the inverse of the 3 x 3 matrix containing 
the vectors along the edges emanating from the tet’s 
origin vertex (see Figure 3).  

Several quantities related to the transformation, 
which are used in deriving the defining equation for 
streamlines in physical coordinates. are provided be- 
low: 

U is the matrix with columns containing the differ- 
ence in vertex velocities, and uo is the velocity at 
the tet’s origin. We derive the governing equation 
for streamlines in physical coordinates by replacing 
the quantities above into the governing equation for 
streamlines in canonical coordinates (equation 5) :  

5 Analytic Solutions 

This section outlines the methods for deriving the 
time-stepping matrix and time-stepping vector us- 
ing analytic solutions to  equation 7. There are four 
general subsets of solutions to  this equation depend- 
ing on the rank of A.  Each case is presented inde- 
pendently below. For ease of notation, the physical 
coordinates, p ( ( ( t ) ,  q ( t ) ,  c ( t ) ) ,  will be written as a 
function o f t  for the remainder of this paper. Also, 
we equate the rank of the system with the rank of 
A .  

5.1 Rank Three Systems 

The solution to equation 7 for a full rank system 
is provided below: 

where p ( 0 )  is the initial physical position. The ma- 
trix eAt is the exponential of the matrix At and is 
defined with the power series 

(9) 
A3t2 

eAt = I + At + + ... . 
The exponential matrix is discussed further by Moler 
and Van Loan.3 Note that A has full rank in this 
case, and therefore the inverse of A exists. 

The time-stepping formula provides the position 
of the particle a t  time t + h for a constant time step 
h.  The formula is derived by evaluating p( t  +h) and 
writing the result in terms of p ( t ) :  

p(t + 1 1 )  = ed( t th)k l  + k?, 
= 
= [-ID(!) + d .  

e A h p ( t )  + (I - eAh)k2,  



This formulation uses the property of exponential 
matrices that exp(A(t + h) )  = exp(dt) exp(Ah) for 
scalars t and h. 

5.2 Rank Two Systems 

The solutions to  the governing equation for rank 
deficient systems can be derived by changing coor- 
dinate systems, 6 = W p ,  where Vt' is orthonormal 
mapping. The critical step is to find this mapping 
W under which the transformed matrix, d, has the 
appropriate number of zero rows. A rank two 4 ma- 
trix will have one zero row, and a rank one A will 
have two zero rows. In the case of a rank two sys- 
tem, the governing equation is written in the new 
coordinate system as follows: 

611 612 613 

w 3  , 
* = [ 1z.1 6 2  6 3  ]'=fi0-&50. 

The solution in t.he z' coordinate is found using direct 
integration of the constant G3, 

E(t) = G3t + q o ) ,  (11) 
where Z(0) is the initial z' coordinate. We will refer 
to the solution in the f and g coordinates F ( t )  = 
[2(tIl mlT: 

t l l  = 62151262261,  t 2 l  = 6126236112712, 
t l 2  = -52161261363, t22 = -612621623'63, 
t13 = c1261162363,  
t14 = 61351162263,  
t15 = 612523522631 

t23 = 523622613631 
224 = fi2151162261, 
t25 = 621z11613631  

t l 6  = -6135;263, 
t17 = -6115;262, 
t18 = -;226:1611 

t26 = -512z;1@ll 
t27 = -6226:162, 
t28 = -6235:163. 

Note if det(d) = 0 another orthonormal mapping W 
would have to be used to achieve a solution of this 
form. 

The time-stepping matrix and vector in the tilde 
coordinate system are found using the same pro- 
cedure used for the rank three system. Position 
e(t + h)  = [P(t + h ) ,  ,Z(t + h)lT is calculated and 
written in terms of $(t). The results are below: 

Finally, & and a are mapped into physical coor- 
dinates using the following transformations: 

H = WI?WT, (13) 
d = WTa.  

5.3 Rank One Systems 
~ ( t )  = e'' [P(o)  - Plz(0) - P3] + a t  + Plz(0) + Pz,  

611 613 Rank one systems are solved similarly to rank two 
systems. An orthonormal mapping is used such that 
the two bottom rows of 2 are zeroed: 

A =  

P ( t )  is a function of the exponential of the left prin- 
ciple submatrix of .&, the initial position G(0) = 
[E(O), $(O), Z(O)]*. and the 2-vectors alp1,  and Pz 
defined below: 

The solutions in and z' are both linear in t ,  and Z 
is a function of fi(O), the exponential of i i l l ,  and the 
scalars a and ,B defined below: 

PI = - 
1=1 

3 
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Note if 611 = 0, another orthonormal mapping W 
would have to be employed to achieve a solution hav- 
ing the above form. 

The time-stepping matrix and vector quantities 
are derived analogously to the rank three and two 
methods: 

1 1 

These quantities are mapped into physical space us- 
ing transformations in equation 13. 

5.4 Rank Zero 

Rank zero systems occur when the four veloci- 
ties at the vertices are the same, thus resulting in 
a zero difference matrix. In such a tet, a particle 
will track parallel to  this velocity value, u. There- 
fore, the time-stepping matrix is simply the identity 
matrix and the time-stepping vector is d = hu.  

6 Imdementation 

In this section we discuss four important issues 
relevant to our implementation of ANTS. The first 
issue pertains to the determination of the rank of A .  
We use a two-step process. First we compute the de- 
terminant. If det( -4) is sufficiently large with respect 
to the infinity norm of A (greater than lo-"), we 
conclude the rank of A is three; otherwise, we com- 
pute the singular value decomposition, A = U D S V ~ .  
The matrices UD and VD are orthonormal, and S is 
a diagonal matrix of singular values, ul, u2, and u3. 
The numerical rank is defined to be the number of 
ratios 2, 2, and E greater than machine precision. 

Second, the singular value decomposition is also 
used to implement the rank deficient system coordi- 
nate mapping discussed in section 3. We use Uz to 
map physical space into the appropriate coordinates: 

6 = u;p. (14) 
Substituting into equation 7 gives .< = S V D U ~ .  

Third. we consider the treatment of rank three 
systems that are numerically rank two (and simi- 
larly rank two matrices that are numerically rank 
one). \Ye have performed several tests that involved 
coniparing the rank two time-stepping matrix with 

the resulting time-stepping matrix for a slightly per- 
turbed, numerically rank three system. We have ob- 
served that  the difference between the two matrices 
is consistent with the perturbation. This suggests 
i t  is acceptable to  approximate solutions of numer- 
ically rank two systems with exact rank two solu- 
tions. We are currently developing the theory to 
study this question quantitatively. Note this prob- 
lem can be side-stepped using SRK4 to  compute the 
time-stepping quantities for numerically rank defi- 
cient systems. 

Finally, Moler and Van Loan discuss numerous 
methods for calculating the exponential of a m a t r i ~ . ~  
We prefer the matrix decomposition methods be- 
cause the decomposition of the matrix A can be per- 
formed once and used in the efficient calculation of 
exp(At) for all scalar values oft .  In particular, we 
use the Schur decomposition, A = Z T Z T ,  where Z 
is an orthonormal matrix and T is quasi-upper trian- 
gular. The  exponential of At is calculated as follows: 

e'' = ZeT'ZT.  (15) 
To compute exp(Tt), we use an algorithm in which 
the exponential of the block diagonals of T are calcu- 
lated explicitly, and the off-diagonals are calculated 
by using a recursive relation involving the exponen- 
tiated block  diagonal^.^ 

7 Results 

The analytic method (ANTS) was compared with 
two common numerical methods, first order forward 
Euler (FE) and fourth-order Runge-Kutta (RK4). 
Critical points of the analysis include the accuracy, 
computation time, and memory required by the var- 
ious algorithms. 

Given any velocity field u(p(t)) and initial posi- 
tion PO, the numerical methods provide an approx- 
imate solution in the form of a sequence of points 
(pi) for i = 0 . .  . IV, with pi x p(ti) for some discrete 
time t i .  iVe denote the ith time-step by hi = ti-ti-1 
for i = 1,. . . , N.  The two numerical methods FE 
and RK4 can be defined by the method used to ob- 
tain pi from pi-1. For Forward Euler, 

Fourth-order Runge-Kutta is defined by 
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The accuracy and stability of the methods are 
dependent upon the selection of hi Our analysis 
includes both constant time step solutions and time- 
adapted solutions. The time step mas adapted based 
on a variation of the method proposed by Haimes 
and Darmofal for steady flow fields' in which the 
velocity tensor was evaluated and used to select a 
time step that would control the average global error 
of the result. 

Two model flow fields were used to test the meth- 
ods. The first is similar to that used by several 
researchers.'# The  velocity field is given by the 
linear function 

'u1(2,?/,2) = - X - 3 Y ,  
211(2,y,z) = - y + 3 2 ,  
w1(.Z,y,z) = -2. 

Provided with initial coordinate (ZO, yo, Z O ) ,  this 
field has exact streamlines given by 

Xl(t) = e-' (XO cos(3t) - yo sin(3t)), (25) 
yl(t)  = e-' (20 sin(3t) + yo cos(3t)), (26) 
z l ( t )  = :oe-'. (27) 

The field has the notable property that it is inter- 
polated exactly on the cells used for our methods. 
Therefore, any error introduced into the solution is 
a result of the numerical method. A second field, 
which is not interpolated exactly, was used to inves- 
tigate the behavior of AXTS for nonlinear fields and 
is given by 

This field has  the exact solution 

C ? ( t )  = ( P o  - . 2 t )  cos(eo + 2t), 
y?(t) = (yo - .2t)sin(& + 2 t ) ,  
:?(t) = roe-'. where 

ro = d G ,  and 
00 = arctan(yo/ro). 

Two measures of accuracy are used to evaluate 
the uirthods. The final error is defined to be E j  = 

Figure 4: Order of the methods, using field 1 

IIPN-P(tN)ll. Our definition of average global error, 

. N  
1 

E = - hillpi - p(t')ll, where (36) 
Tf i=l 
N 

i= l  
(37) 

is adapted from that given by Darmofal and 
Haimes.' 

All software was written in C, and the numerical 
results were obtained on a Silicon graphics worksta- 
tion with a single, 100 MHz MIPS R4000 processor. 
A cubic mesh with 1000 cubic cells was decomposed 
into a tetrahedral mesh. Streamline calculations for 
field 1 were initiated with po = (-.5, -.6, -.4) and 
terminated once the time had accumulated beyond 
4.0 units. Streamlines for field 2 were initiated with 
po = (1.2, .2, .2) and terminated at 5.0 time units. 

The orders of the methods in terms of the final er- 
rors are depicted in figure 4. The numerical methods 
are as expected, with FE having order 1 and RK4 
having order 4. The order of the analytical solution 
is approximately machine precision at  15. The small 
reduction in accuracy with smaller time steps can be 
attributed to cumulative roundoff errors. Figure 5 
depicts the calculated streamlines for a large fixed 
time step on field 1. The time step has been chosen 
such that the RK4 stability limit is exceeded.' The 
analytic solution remains accurate and stable under 
these conditions. Figure G shows the streamlines as 
calculated for field 2. Here we see that FE is unsta- 
ble, RK4 is stable but not very accurate, and ANTS 
is stable and accurate. In order to provide the full 
picture, figures 7 and 8 show c and y as functions of 
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Figure 5: Plots of the solutions with constant h = 
.90 on linear velocity field 
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Figure 6: Plots of the solutions with constant h = 
.90 on nonlinear velocity field 

t .  Note that we restrict our graphs to  the x-y plane 
because these are the more interesting views. 

Timing results were obtained by averaging 100 
streamline calculations on field 1. The best per- 
formance of ASTS is obtained by precomputing H 
and d for each cell and then using (2) to compute 
the streamlines. The  first set of timing results uses 
precomputed matrices and involves streamlines com- 
puted with a predetermined constant time step. The 
time required for the AXTS solution was typically 
.GB and .28 times that  required for FE and RK4, re- 
spectively. For a mesh with a large number of cells, 
computer meinor>- may not be available to precom- 
pute and store H and d.  In this case, the ANTS 
solution took 2.3 times as long as FE and was ap- 

Figure 7: Solution on nonlinear field h = .90 
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Figure 8: Solution on nonlinear field h = .90 

proximately equal in speed to RK4. 
In the previous timings, all methods completed 

the same number of time steps and obtained differ- 
ent levels of accuracy. A more meaningful compari- 
son of computational costs was obtained by adapting 
the time step and requiring that all of the methods 
satisfy a given bound of the average global error. 
This takes into account the fact that less accurate 
methods require smaller, and hence more, time steps 
to obtain a solution of comparable accuracy. The 
timing data were obtained by specifying a bound on 
the average global error and solving a modified form 
of the time step equation given by Darmofal and 
Haimes.' 

The computation time is plotted against the er- 
rors obtained by the methods in figure 9. The 
curve for FE contains only two data points, in or- 
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Figure 9: Computation time as a function of average 
global error requirements. 

Table 1: Timings for matrix computations, 1 unit 
equals the time required for a single Ar + b compu- 
tation where A is a 3 x 3 matrix 

Matrix Time (units) 
Transform 3.2 
A 3.1 
A-1 2.0 
Schur decomposition 29.5 
H and d 10.4 

der to preserve the scale on the timing axis. Clearly, 
however. FE is computationally expensive compared 
with RK4 and AXTS. In the graph. the ANTS so- 
lutions appear to become faster as the tolerance de- 
creases. However. the analytic solutions were com- 
puted on the same time steps as the RK4, and the 
behavior observed corresponds to increases in cu- 
mulative roundoff error as the time step is adapted 
to the error requirement. The ASTS solutions are 
faster and more accurate than RK4 in this case. 

Because precomputed matrices require a large 
amount of computer memory for storage and im- 
prove the speed of the streamline calculations, times 
required to conipute the respective matrices are 
given in table 1. The times have been normalized by 
the time required to  compute a matrix vector multi- 
plication followed by a vector addition. These tim- 
ings were obtained by averaging the times required 
for approximately 30,000 matrix evaluations on field 
2. The balance of memory use and computational 
speed will  depend on available resources and prior- 
ities for a given application. If the time steps are 
known at initialization time. it is recommended that 
M and d he computed and stored for each cell. I f  the 

time step is not known until computation time, pre- 
computation and storage of A,  A-I ,  and the Schur 
decomposition will speed the calculation of H and d 
once a time step is selected. 

8 Conclusion 

We have taken advantage of the fact that  ana- 
lytic solutions exist for streamlines in a linear veloc- 
ity field to find analytic solutions to  linearly inter- 
polated fields resulting from many flow-solving tech- 
niques. The accuracy of the analytical streamlines is 
approximately machine precision and superior to the 
results from the common forward Euler and fourth 
order Runge-Kutta methods. In addition, by pre- 
computing matrices associated with the analytical 
technique, the streamline calculations require less 
time than do both numerical methods. Therefore, 
if storage memory is available, the analytic solver 
provides faster more accurate results than the two 
numerical methods tested. 

The analytical method also appears to  provide 
stable solutions even when numerical methods have 
failed. The test case of an inward-spiraling flow illus- 
trated that both of the numerical methods can fail 
to properly capture the proper flow pattern, whereas 
the analytical method succeeded. 
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